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Computations of spheroidal harmonics with complex arguments:
A review with an algorithm

Le-Wei Li,* Mook-Seng Leong, Tat-Soon Yeo, Pang-Shyan Kooi, and Kian-Yong Tan
Communications & Microwave Division, Department of Electrical Engineering, National University of Singapore,

10 Kent Ridge Crescent, 119260 Singapore
~Received 12 March 1998!

This paper not only reviews the various methodologies for evaluating the angular and radial prolate and
oblate spheroidal functions and their eigenvalues, but also presents an efficient algorithm which is developed
with the software packageMATHEMATICA . Two algorithms are developed for computation of the eigenvalues
lmn and coefficientsdr

mn . Important steps in programming are provided for estimating eigenvalues of the
spheroidal harmonics with a complex argumentc. Furthermore, the starting and ending points for searching for
the eigenvalues by Newton’s method are successfully obtained. As compared with the published data by
Caldwell @J. Phys. A21, 3685~1988!# or Presset al. @Numerical Recipes in FORTRAN: The Art of Scientific
Computing~Cambridge University Press, Cambridge, 1992!# ~for a real argument! and Oguchi@Radio Sci.5,
1207 ~1970!# ~for a complex argument!, the spheroidal harmonics and their eigenvalues estimated using this
algorithm are of a much higher accuracy. In particular, a lot of tabulated data for the intermediate coefficients
drur

mn , the prolate and oblate radial spheroidal functions of the second kind, and their first-order derivatives, as
obtained by Flammer@Spheroidal Wave Functions~Stanford University Press, Stanford, CA, 1987!#, are found
to be inaccurate, although these tabulated data have been considered as exact referenced results for about half
a century. The algorithm developed here for evaluating the spheroidal harmonics with theMATHEMATICA

program is also found to be simple, fast, and numerically efficient, and of a much better accuracy than the other
results tabulated by Flammer and others, being able to produce results of 100 significant digits or more.
@S1063-651X~98!05511-1#

PACS number~s!: 02.70.Rw
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I. INTRODUCTION

Spheroidal harmonics are special functions in mathem
cal physics which have found many important and pract
applications in science and engineering where the sphero
coordinate system is used. In the evaluation of electrom
netic fields in spheroidal structures, spheroidal wave fu
tions are frequently encountered, especially when
boundary-value problems in spheroidal structures are so
using full-wave analysis. By applying the separation of va
ables to Maxwell’s equations of either the electric or ma
netic field, two types of spheroidal harmonics, i.e., prol
and oblate functions corresponding to their respective co
dinates system, can be obtained. Symbolically, one type
harmonics can be obtained from another simply by mak
the changesc→2 ic andj→ i j. Computationally, the value
of the prolate and oblate spheroidal wave functions are
culated in quite different ways.

In prolate ~or oblate! spheroidal coordinates, the separ
tion of the variables results in three independent functio
~1! the radial spheroidal function Rmn

( i ) (c,j) @or
Rmn

( i ) (2 ic,i j)] ( i 51,2,3,4); ~2! the angular spheroida
function Smn(c,j) @or Smn(2 ic,j)] @also referred to as the
generalized Legendre functionP n

m(c,j)]; and ~3! the sine
and cosine functions. The last pair of trigonometrical fun
tions ~sine and cosine! is well known, but the first two are
not so easily computed. Computation of the spheroidal p

*FAX: ~165! 779 1103. Electronic address: LWLi@nus.edu.s
PRE 581063-651X/98/58~5!/6792~15!/$15.00
ti-
l
al

g-
-
e
ed
-
-
e
r-
of
g

l-

-
s:

-

-

late~or oblate! radial~or angular! functions is involved in the
eigenvalue computation and the forward and backward
cursion formulation. Theoretically, the formulation of the
harmonics was well documented by J. A. Strattonet al. ear-
lier in 1956 @1# and Flammer in 1957@2#. The computation
of the eigenvalues@3–6# and the first-order derivatives@7–
18# ~of the angular and radial spheroidal wave function!
usingFORTRAN andC programs have been very difficult.

Programs available to the public for numerically comp
ing spheroidal harmonics and their eigenvalues are limite
the following: ~i! a mathematical functions handbook r
cently published in 1992 by Baker, who provided many u
ful routines and codes inC language for computation of spe
cial functions including the spheroidal harmonics and th
eigenvalues;~ii ! a popular handbook series of routines a
codes inBASIC, C, FORTRAN, andPASCAL ~see Ref.@19#!; ~iii !
two newly published handbooks, one by Zhang and Jin@20#
and another by Thompson@21#, in which the authors in-
cluded a large number ofFORTRAN programs that are capabl
of calculating a wide variety of special mathematical fun
tions to a reasonable degree of accuracy. Other progr
mentioned in the references are in general not directly ac
sible to the public, and therefore obtaining the source co
is not very convenient.

Basically, there are five methods available for evaluat
the eigenvalues of spheroidal harmonics:~i! exact evalua-
tion, on solving the transcendental equation in continu
fraction form @1,2# or its equivalent@10#; ~ii ! an accurate
evaluation by the relaxation method@3,8,19#; ~iii ! an ap-
proximate evaluation by power series expans
@5,14,17,18,22#; ~iv! an approximate estimation b
6792 © 1998 The American Physical Society
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asymptotic expansions@6,22#; and ~v! a systematic evalua
tion by casting the eigenvalue problem in a tridiagonal, sy
metric matrix @5#. The results of the first method are ve
accurate, and have been used as referenced data for com
son @7,12,13#. The second method, developed by Caldw
@3#, has become very popular recently, and has been im
mented into the programs of both Refs.@19# and@8#; it con-
verges quickly and gives reasonably good agreement
tween the evaluated results@3,8,19# and the exact results o
Flammer@2#, even when the value ofc2 becomes quite large
The third method has the advantage of rapid converge
when the value ofc2 is small, but its convergence becom
quite slow or the method may even fail whenc2 is large
~e.g., c>10) @5,6,14,17,18#. The fourth method provides
simple and easy-to-use formulas for the evaluation of
eigenfunctions, but it is valid only for smallc’s. The fifth
method, suggested by Hodge@5#, reduces the eigenvalu
problem to that of finding the eigenvalues of a real~or imagi-
nary!, tridiagonal symmetric matrix. Thus it allows for wel
known procedures, which are rapid and accurate, to be u
for the eigenvalue computation. It is more direct and syste
atic in comparison with other methods. Furthermore, it
considered to be a valuable tool when the computation
numerous eigenvalues is required.

Although there have been many published papers on c
putations of the eigenvalues of spheroidal harmonics o
the past several decades, almost all of them are valid only
the real argumentc. To the authors’ knowledge, howeve
there are two exceptions@23#: one is the evaluation publishe
by Oguchi in 1970@6#, and the other by Eglaya@4#. The
former, using one infinite power series expansion for sm
c2 and two asymptotic expansions for largec2 to compute
the complex eigenvalues, does not seem to be systematic
accurate enough, since the boundary for small and large
ues of c2 is not clear †limc→0@lmn(c)#5n(n11)
1 (c2/2) „12 @(2m21)(2m11)/(2n21)(2n13)#… and
limc→`@lmn(c)#5(2n22m11)c‡. The latter was pub-
lished in Russian and thus has a limited readership, altho
it did compute the complex eigenvalues.

For a numerical computation of the spheroidal angu
and radial functions, a similar situation exists, since com
tation of both functions involves the eigenvalueslmn . Sev-
eral programs have been developed, as listed in the litera
@7–18#, but only a few of them are obtainable. Most impo
tantly, the programs available in the literature for evaluat
of the spheroidal harmonics are applicable only to real ar
ment problems where the permittivity of each spheroidal
gion is lossless@i.e., Im(c)50 under prolate spheroidal co
ordinates, or Re(c)50 under oblate spheroidal coordinate#.
Also, so far there is no commercial software such asMAPLE,
MATHCAD, MATLAB , and MATHEMATICA available for com-
putation of these spheroidal harmonics.

Nowadays, computer facilities are better, and there i
need to know which program or algorithm for computin
these functions is the best with the current computer
sources. In this connection, a comparison of the exis
methods for computing spheroidal harmonics and their
genvalues is made in this paper. SinceMATHEMATICA soft-
ware contains many symbolic and numerical built-in routin
with simple commands or kernels, and is one of the m
popular and mathematically powerful packages worldwi
-
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an exact computation technique is adopted in this pape
evaluate the spheroidal harmonics and their eigenvalues
efficient program routine consisting of functional comman
of eigenvaluesl, angular Smn(c,j) and radial Rmn

( i ) (c,j)
spheroidal harmonics, and their first-order derivatives
been developed. In particular, some important steps and
tial values in numerical implementation, such as the New
method for eigenvalues, are given. Both the prolate and
late coordinate systems are considered. In the computa
there is no restriction on the dielectric properties~i.e., the
medium can be eitherlosslessor lossy! and the accuracy
remains very high when the value ofc2 is very large. Al-
though the routines for computing the eigenvalues and
spheroidal functions are not attached herein due to the le
restriction, the complete software routine package will so
be available from theMATHSOURCE on the Web Page o
Wolfram’s MATHEMATICA .

II. SPHEROIDAL COORDINATES AND
SPHEROIDAL HARMONICS

The prolate spheroidal coordinates shown in Fig. 1
related to the rectangular coordinates by the following tra
formations:

x5
d

2
A~12h2!~j221!cosf, ~1a!

y5
d

2
A~12h2!~j221!sin f, ~1b!

z5
d

2
hj, ~1c!

with

21<h<1, 1<j,`, 0<f<2p, ~1d!

whereas the oblate spheroidal coordinates are related by

x5
d

2
A~12h2!~j211!cosf, ~2a!

FIG. 1. Prolate spheroidal coordinates (z,u,c).
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y5
d

2
A~12h2!~j211!sin f, ~2b!

z5
d

2
hj, ~2c!

with

21<h<1, 0<j,`, 0<f<2p ~2d!

or

0<h<1, 2`,j,`, 0<f<2p. ~2e!

With these coordinate systems, the Helmholtz scalar w
equation becomes separable. The solutions of the wave e
tion are expressed by the scalar wave functions

cmn5Smn~c,h!Rmn~c,j!
cos
sinmf ~3a!

for prolate spheroidal coordinates, and

cmn5Smn~2 ic,h!Rmn~2 ic,i j!
cos
sinmf ~3b!

for oblate spheroidal coordinates, respectively. The f
functions Smn(c,h), Rmn(c,j), Smn(2 ic,h), and
Rmn(2 ic,i j), satisfy the following ordinary differentia
equations:

d

dhF ~12h2!
d

dh
Smn~c,h!G1Flmn2c2h22

m2

12h2G
3Smn~c,h!50, ~4a!

d

djF ~j221!
d

dj
Rmn~c,j!G2Flmn2c2j21

m2

j221
G

3Rmn~c,j!50 ~4b!

and

d

dhF ~12h2!
d

dh
Smn~2 ic,h!G1Flmn1c2h22

m2

12h2G
3Smn~2 ic,h!50, ~5a!

d

djF ~j211!
d

dj
Rmn~2 ic,i j!G2Flmn2c2j22

m2

j211
G

3Rmn~2 ic,i j!50. ~5b!

III. EIGENVALUES OF SPHEROIDAL HARMONICS
OF COMPLEX ARGUMENT

A. Algorithm I using transcendental equation

The separation constantslmn in the above two pairs o
equations are the eigenvalues of theprolateandoblatesphe-
roidal angular and radial functions. These eigenvalues sa
isfy the transcendental equation
e
ua-

r

U1~lmn!1U2~lmn!50, ~6!

where

U1~lmn!5gn2m
m 2lmn2

bn2m
m

gn2m22
m 2lmn2

3
bn2m22

m

gn2m24
m 2lmn2

bn2m24
m

gn2m26
m 2lmn2

•••,

~7a!

U2~lmn!52
bn2m12

m

gn2m12
m 2lmn2

bn2m14
m

gn2m14
m 2lmn2

3
bn2m16

m

gn2m16
m 2lmn2

•••. ~7b!

In Eqs.~7a! and ~7b!, the compact notation

a2
b

c2

d

e2

f

g2

h

i 2
•••

denotes the continued fraction

a2
b

c2
d

e2
f

g2
h

i 2•••

,

and the intermediatesb r
m and g r

m are defined according to
Flammer@2# by

b r
m5

r ~r 21!~2m1r !~2m1r 21!

~2m12r 21!2~2m12r 23!~2m12r 11!
c4,

~r>2! ~8a!

g r
m5~m1r !~m1r 11!1

c2

2

3F12
4m221

~2m12r 21!~2m12r 13!G ~r>0!. ~8b!

As can be seen from the transcendental equation, the
lution can be found by expanding the eigenvalueslmn into a
Taylor series and then solving the polynomial equatio
which was discussed by several published papers. The
tailed expansion with a few given coefficients was addres
by Flammer@2#. However, the expansion is accurate on
when the value ofc2 is not very large. Whenc2 is very large,
the Taylor series expansion technique fails because the s
representation does not converge. In a similar fashion,
relaxation method@3,19# is also not accurate whenc2 is very
large.

However, the solution for anyc2 can be found by solving
the transcendental equation~6! directly. Newton’s numerical
technique can be employed to solve for its roots efficien
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where the estimated value oflmn and the starting and en
points of the iterative technique are found to be

lestimate5n~n11!1ReF c

2G , ~9a!

lstart5n~n11!2c2F12
~2m21!~2m11!

~2n21!~2n13! G , ~9b!

lend5n~n11!1c2F12
~2m21!~2m11!

~2n21!~2n13! G . ~9c!

The values oflestimate, lstart, andlend are tested in the pro
gram many times, and finally the above values are fou
The routine for finding the rootslmn in Eq. ~6! is available in
Wolfram’s web page.

As seen from the program, the routine consisting
simple statements is very compact. The advantage of
softwareMATHEMATICA has already been taken into consi
eration since the command ‘‘Fold’’ provides a simple a
efficient implementation of the continued fraction.

To see if the program is efficient, the eigenvalueslmn of
the spheroidal harmonics are computed. The results are c
pared with the data available elsewhere in the publication
Ref. @19# for real argumentc, and in Ref.@6# for complex
argumentc.

For the real argument ofc, as shown in Table I, the cur
rent routine produces exactly the same results as Flam
and is much better than the routine ‘‘sfroid’’ of the Nume
cal Recipe@19#. Also, the comparison between the curren
computed results and Flammer’s results shows an exce
agreement, but the current routine has the capability of p
ducing results of 100 significant digits or more.

For the complex argument ofc, as shown in Table II, this
routine produces exact results@24#. The comparison also
shows that Oguchi’s results of eigenvalues for complex
guments are also good enough.

B. Algorithm II using recursive matrix equation

However, it should be pointed out that the above init
guesses in Eqs.~9a!–~9c! are only valid whenc2 is less than
d.

f
he

m-
in

er

nt
o-

r-

l

1000. If this number is larger, other modifications must
made. This is because when the value ofc is large, the re-
quired accuracy forlstart in Eq. ~9b! must be exceptionally
high in order for Newton’s method to evaluate the corre
eigenvalues. Hence, the original formulation oflstart is no
longer accurate enough in the cases whenc2.1000. Under
this condition, it is found that to solve for the eigenvalue
Newton’s method is impractical. This is because there
many very closely spaced roots of Eq.~6! in a narrow range,
so that a very accurate initial guess is necessary for com
ing the eigenvalue.

Thus, in the case ofc2.1000, the method proposed b
Hodge@5# represents a more appropriate way of solving
the eigenvalues. A brief description of this method is giv
subsequently.

Substitution of Eq.~16a! into Eq. ~4a! yields the follow-
ing recurrence relation for the angular function expans
coefficients:

Ar
m~c!dr 12

mn ~c!1@Br
m~c!2lmn~c!#dr

mn~c!

1Cr
m~c!dr 22

mn ~c!50, r>0, ~10!

where

Ar
m~c!5

~2m1r 12!~2m1r 11!

~2m12r 13!~2m12r 15!
c2, ~11a!

Br
m~c!5

2~m1r !~m1r 11!22m221

~2mm12r 21!~2m12r 13!
c2

1~m1r !~m1r 11!, ~11b!

Cr
m~c!5

r ~r 21!

~2m12r 23!~2m12r 21!
c2. ~11c!

Now, let

Dq5C2q1s , ~12a!

Eq5B2q1s , ~12b!

Fq5A2q1s . ~12c!
TABLE I. Comparison of selected values of eigenvaluelmn computed by Flammer~1957!, the Cam-
bridge Numerical Recipe, and the present authors.

c2 (m,n) lmn

Flammer~1957! Numerical Recipe This paper

21.0 ~4,11! 131.560 131.554 131.560 008 09

0.10 ~2,2! 6.014 27 6.014 27 6.014 266 631 4

1.00 ~1,1! 2.195 55 2.195 55 2.195 548 355
~2,2! 6.140 95 6.140 95 6.140 948 992
~2,5! 30.4361 30.4372 30.436 145 39

4.00 ~1,1! 2.734 11 2.734 11 2.734 111 026
~2,2! 6.542 50 6.542 53 6.542 495 274

16.0 ~1,1! 4.399 59 4.399 61 4.399 593 067
~2,5! 36.9963 37.0135 36.996 267 50
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c is omitted from the above equations for simplicity. Th
the recurrence equation~10! becomes

Dqaq211~Eq2lmn!aq1Fqaq1150, q>0. ~13!

By a change of variables aq5(D1D2D3•••Dq /
F0F1•••Fq21)1/2bq in Eq. ~13!, and multiplying the resulting
o

en
e

ul
e
e

o
4
n
a
r

rs
expression by (F0F1•••Fq21 /D1D2D3 •••Dq)1/2, the fol-
lowing form of the recursion relation is obtained:

~DqFq21!1/2bq211~Eq2l!bq

1~Dq11Fq!1/2bq1150, q>0. ~14!

The above equation can be written in matrix form as follow
3
~E02l! ~D1F0!1/2 0 0 •••

~D1F0!1/2 ~E12l! ~D2F1!1/2 0 •••

0 ~D2F1!1/2 ~E22l! ~D3F2!1/2
•••

0 0 ~D3F2!1/2 ~E22l! •••

. . . . •••

. . . . •••

. . . . •••

. . . . •••

4 3
b0

b1

b2

b3

.

.

.

4 53
0

0

0

0

.

.

.

4 . ~15!
of

m-
ated
en

nds
are
as
When the matrix in Eq.~15! is obtained, the eigenvaluel
can then be evaluated directly and accurately using the c
mand ‘‘Eigenvalue’’ inMATHEMATICA .

A compact program capable of fast computation of eig
values for largec has been developed. The results produc
by the program agree well with the existing tabulated res
in the literature@20,5,2#. As a sample of input-output, th
eigenvalues have been computed for the cases wherm
51,2,3; n53,4,...,22,23, and c
50.5,1.0,2.5,5.0,10.0,25.0,50.0, and 100.0. The results c
puted are compared with the values in Tables 15.1–15.
the handbook by Zhang@20#. It is found that the values are i
good agreement. Like our previous routine of fractional c
culus, this routine also has the advantage of producing
sults of 100 significant digits or more.

IV. CALCULATION OF ANGULAR
SPHEROIDAL HARMONICS

To compute the angular spheroidal harmonics of the fi
and second kinds, i.e.,Smn(c,h) andSmn

(2)(c,h), the follow-
m-

-
d
ts

m-
of

l-
e-

t

ing methods, namely,~i! the series expressions in terms
associated Legendre functions, and~ii ! the power series
representations, are normally used.

A. Series representation in terms of associated
Legendre functions

The angular spheroidal function, as documented by Fla
mer @2#, can be represented as a series of the associ
Legendre functions of different orders. The relations betwe
the angular spheroidal functions of the first and second ki
and the associated Legendre functions of different orders
given for the prolate and oblate spheroidal coordinates
follows: For the first kind,

Smn~c,h!5 ( 8
l 50,1

`

dl
mn~c!Pm1l

m ~h!, ~16a!

Smn~2 ic,h!5 ( 8
l 50,1

`

dl
mn~2 ic !Pm1l

m ~h!; ~16b!
hi
TABLE II. Comparison of calculated eigenvalueslmn with corresponding values tabulated by Oguc
~1970!.

c (m,n) Eigenvalueslmn

Oguchi ~1970! Computed

1.824 7701i2.601 670 ~0,0! 1.705 1801i4.220 186 1.701 8361i4.219 998
2.094 2671i5.807 965 ~0,2! 1.998 5181i8.578 716 1.993 9011i8.576 325
5.217 0931i3.081 362 ~0,2! 23.915 821i18.743 32 23.910 231i18.741 94
3.563 6441i2.887 165 ~0,1! 10.140 831i11.121 58 10.137 051i11.122 16
1.998 5551i4.097 453 ~1,1! 2.915 3181i6.133 951 2.919 0981i6.134 851
3.862 8331i4.492 300 ~1,2! 12.201 091i16.244 07 12.196 911i16.245 34
2.136 9871i5.449 457 ~2,2! 6.102 5401i7.684 763 6.098 9461i7.684 379
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and for the second kind,

Smn
~2!~c,h!5 ( 8

l 52`

`

dl
mn~c!Qm1l

m ~h!

5 ( 8
l 522m,22m11

`

dl
mn~c!Qm1l

m ~h!

1 ( 8
l 52m12,2m11

`

drul
mn~c!Pl 2m21

m ~h!,

~17a!

Smn
~2!~2 ic,h!5 ( 8

l 52`

`

dl
mn~2 ic !Qm1l

m ~h!

5 ( 8
l 522m,22m11

`

dl
mn~2 ic !Qm1l

m ~h!

1 ( 8
l 52m12,2m11

`

drul
mn~2 ic !Pl 2m21

m ~h!,

~17b!

wherePn
m(x) is the associate Legendre function; herein a

in the sequel, the prime over the summation sign indica
that the summation is over only even values ofl when n
2m is even, and over only odd values ofl whenn2m is
odd; and

drul
mn~c!5 lim

r→0
d2l 1r

mn /r. ~18!
-

d
s

The intermediate parameterdl
mn is an important quantity fre-

quently used in the formulation of the prolate~and oblate!
angular~and radial! spheroidal harmonics of various kind
Thus an independent section has been proposed so as to
mulate and evaluate the parameterdl

mn . This issue will be
addressed later.

The above series representation of the angular sphero
harmonics are widely adopted@8–18# in the computation.
The speed of convergence of the series is quite rapid, req
ing only 4–14 terms~depending upon the value ofc) to
achieve necessarily good accuracy. Therefore, this pape
tually developed an efficient algorithm based on these se
expressions.

The angular spheroidal function of the second kind giv
above also serves as a special function in mathematical p
ics, but it has not found many applications in physics a
electromagnetic wave theory. However, the angular sphe
dal function of the first kind is an important special functio
which is commonly employed in physics and in the fu
wave analysis of practical electromagnetic problems. He
the angular function of the second kind will not be dealt w
in great detail later in this paper.

B. Power series representation

Expanding the associated Legendre functions as a po
series of 12h2, we have the following expressions of th
angular spheroidal harmonics for even and odd (n2m):
Smn~c,h!55 ~12h2!m/2(
k50

`

c2k
mn~c!~12h2!k, ~n2m! even,

h~12h2!m/2(
k50

`

c2k
mn~c!~12h2!k, ~n2m! odd,

~19a!

and

Smn~2 ic,h!55 ~12h2!m/2(
k50

`

c2k
mn~2 ic !~12h2!k, ~n2m! even,

h~12h2!m/2(
k50

`

c2k
mn~2 ic !~12h2!k, ~n2m! odd,

~19b!

where the coefficientsc2k
mn are related todr

mn by

c2k
mn5

1

2mk! ~m1k!! 5 (
r 5k

`
~2m12r !!

~2r !!

G~k2r !

G~2r !

G~ k1m1r 1 1
2 !

G~m1r 1 1
2 !

d2r
mn , ~n2m! even,

(
r 5k

`
~2m12r 11!!

~2r 11!!

G~k2r !

G~2r !

G~ k1m1r 1 3
2 !

G~m1r 1 3
2 !

d2r 11
mn , ~n2m! odd.

~20!
rms
Inside Eq.~20!, argument~c! is not specified. For both pro
late ~c! and oblate (2 ic) cases, Eq.~20! is always valid.

Besides the above power series of 12h2, an alternative
representation of the angular spheroidal harmonics in te
of the following simple ascending power series ofh is given
by
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Smn~c,h!5~12h2!m/2 ( 8
l 50,1

`

pl
mn~c!h l , ~21a!

Smn~2 ic,h!5~21!n2m~12h2!m/2e2ch (
l 50

`

Bl
mn~2 ic !

3~11h! l

5~12h2!m/2ech (
l 50

`

Bl
mn~2 ic !~12h! l ,

~21b!

wherepl
mn(c) andBl

mn(2 ic) satisfy respectively the recur
rence relations as follows:

~ l 11!~ l 12!pl 12
mn ~c!2@ l ~ l 12m11!1m~m11!

2lmn~c!#pl
mn~c!2c2pl 22

mn ~c!50, ~22a!

2~ l 11!~ l 1m11!Bl 11
mn ~c!2@ l ~ l 12m1114c!

1~m11!~m12c!2lmn~2 ic !2c2#Bl
mn~2 ic !

12~ l 1m!cBl 21
mn ~2 ic !50, ~22b!

and
o
n
i

nd
nd
lim
l →`

pl 12
mn ~c!

pl
mn~c!

50, and lim
l →`

Bl 11
mn ~2 ic !

Bl
mn~2 ic !

50. ~23!

These series forms in Eqs.~19a! and ~19b! serve as alterna
tive exact representations of the angular spheroidal harm
ics where the associated Legendre functions are not rea
available. The computational and convergence speeds fo
evaluations of Eqs.~19a! and ~19b! are almost the same a
those of Eqs.~16a! and~16b!. Equations~21a! and~21b! also
give good results of the angular spheroidal functions, but
convergence of the series is not as rapid as that of the s
of Eqs.~19a! and ~19b! or ~16a! and ~16b!.

C. Solution of auxiliary second-order differential equation

As was known previously, the prolate and oblate angu
spheroidal harmonics satisfy the differential equation

d

dhF ~12h2!
d

dh
Smn~c,h!G1Flmn2c2h22

m2

12h2G
3Smn~c,h!50. ~24!

To determine the solution of the spheroidal functi
uniquely, the boundary conditions given as follows may
used:
Smn~c,0!55
~21!n2m/2~n1m!!

2nS n2m

2 D ! S n1m

2 D !

,
~n2m! even

0, ~n2m! odd;

~25a!

Smn8 ~c,0!55
0, ~n2m! even,

~21!n2m21/2~n1m11!!

2nS n2m21

2 D ! S n1m11

2 D !

,
~n2m! odd.

~25b!
a-

ore
he
ua-
he
The prolate angular spheroidal harmonics can also be
tained from the solution of the auxiliary differential equatio
and its boundary conditions in different forms, as stated
Refs. @9,10#. The only difference between this method a
the method given by Abramov and co-workers is the bou
ary conditions utilized. Abramov and co-workers@9,10# ap-
plied the boundary and normalized conditions

S~c,0!50,

whereS(c,1) is bounded and finite, and

E
21

1

Smn
2 ~c,h!51,
b-

n

-

or

S8~c,0!50,

whereS(c,1) is bounded and finite, and

E
21

1

Smn
2 ~c,h!51,

to solve numerically for the solution of the differential equ
tions.

However, the boundary conditions given here are m
numerically straightforward and efficient. Whatever t
boundary conditions are, the solution of the differential eq
tion is very computationally costful as compared with t
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methods mentioned above. So far, this method has been
plied to the prolate spheroidal coordinates only. Further
tension to the oblate spheroidal coordinates can be mad
well.

D. Comparison of calculated results and Flammer’s data

To show the accuracy of this program, we have calcula
Smn(c) and obtained a great deal of data. In Table III, t
currently calculated results ofS02(3,cosu) are compared
with those tabulated by Flammer@2#. It is clear that very
good agreement between the two sets of results are dem
strated, but the current results are of better accuracy to
degree of precision.

V. INTERMEDIATE COEFFICIENTS dl
mn AND drzl

mn

The coefficients,dl
mn used in many places for positiv

index l >0 varying from 0 ~or 1) to ` for even ~or odd!
n2m, andd2k

mn(c) with negative index2k,0 varying from
22m ~or 22m11) to 22 ~or 21) for even ~or odd!
n2m, are determined@2# from the continued fraction formu
las

dl 12
mn

dl
mn

52
ql 12

pl 122
ql 14

pl 142
ql 16

pl 162�

, l >1, ~26a!

d2k
mn

d2k12
mn

52
a2k

b2k2
g2ka2k22

b2k222•••

. ~26b!

It is found from the definition that

d2
mn

d0
mn

52p0 ,
d3

mn

d1
mn

52p1 ,

pl 5b l /a l ,ql 5g l /a l .

TABLE III. Comparison of calculated values of angular fun
tionsS02(3,cosu), with corresponding values tabulated by Flamm
~1957!.

u S02(3.0,cosu)

~in degrees! Computed Flammer~1957!

0 11.040 93 11.041
10 11.023 06 11.023
20 10.963 95 10.964
30 10.849 71 10.8497
50 10.410 411 10.4104
80 20.417 055 20.4171
ap-
-
as

d

n-
ny

The intermediatesa l , b l , andg l used above are given b

a l 5
~2m1l 12!~2m1l 11!

~2m12l 13!~2m12l 21!
c2, ~27a!

b l 5~m1l !~m1l 11!2lmn~c!

1
2~m1l !~m1l 11!22m221

~2m12l 21!~2m12l 13!
c2, ~27b!

g l 5
l ~ l 21!

~2m12l 23!~2m12l 21!
c2, ~27c!

where lmn(c)’s denote the eigenvalues for a givenc and
assumed valuesm andn.

In order to determine the unique solutions of thedl
mn’s,

the following two equations are also used: For evenn2m,

( 8
l 50

`
~21! l /2~ l 12m!!

2l S l

2 D ! S l 12m

2 D !

dl
mn~c!

5
~21!~n2m!/2~n1m!!

2n2mS n2m

2 D ! S n1m

2 D !

, ~28a!

and for oddn2m,

( 8
l 50

`
~21!~ l 21!/2~ l 12m11!!

2l S l 21

2 D ! S l 12m11

2 D !

dl
mn~c!

5
~21!~n2m21!/2~n1m11!!

2n2mS n2m21

2 D ! S n1m11

2 D !

. ~28b!

With the above equations, we can determine the coefficie
dr

mn(c), where, most importantly,c can be a complex num
ber and r 522m,...,22,0,2,... for evenn2m, or 22m
11,...,21,1,3,... for evenn2m.

VI. CALCULATION OF RADIAL
SPHEROIDAL HARMONICS

A. Series representation in terms of spherical Bessel functions

The radial spheroidal functions of the first to the four
kinds can be expressed by

r
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Rmn
~ i ! ~c,j!5

1

(
l 50,1

`

dl
mn~c!

~2m1l !!

l !

S j221

j2 D m/2

( 8
l 50,1

`

i l 1m2ndl
mn~c!

~2m1l !!

l !
zm1l

~ i ! ~cj!, ~29a!

Rmn
~ i ! ~2 ic,i j!5

1

( 8
l 50,1

`

dl
mn~2 ic !

~2m1l !!

l !

S j211

j2 D m/2

( 8
l 50,1

`

i l 1m2ndl
mn~2 ic !

~2m1l !!

l !
zm1l

~ i ! ~cj!, ~29b!
s

o

io
r

ve
ta

are
it is
am-

kind
where zn
( i )(x) is the ith kind of spherical Bessel function

of order n, i.e., zn
(1)(x)5 j n(x), zn

(2)(x)5nn(x), zn
(3)(x)

5hn
(1)(x), andzn

(4)(x)5hn
(2)(x), respectively. Sincehn

(1)(x)
5 j n(x)1 inn(x) andhn

(2)(x)5 j n(x)2 inn(x), thus

Rmn
~3!~c,j!5Rmn

~1!~c,j!1 iRmn
~2!~c,j!, ~30a!

Rmn
~4!~c,j!5Rmn

~1!~c,j!2 iRmn
~2!~c,j! ~30b!

for the prolate functions, and

Rmn
~3!~2 ic,i j!5Rmn

~1!~2 ic,i j!1 iRmn
~2!~2 ic,i j!, ~31a!

Rmn
~4!~2 ic,i j!5Rmn

~1!~2 ic,i j!2 iRmn
~2!~2 ic,i j! ~31b!

for the oblate functions.
It is checked numerically that although the summation

Eq. ~30a! is rapidly convergent, Eq.~30b! converges very
slowly and similarly for Eqs.~31a! and~31b!. It is observed
from numerical evaluation that the spherical Bessel funct
of the second kindnm1l

( i ) (cj) becomes larger and large
when its coefficient becomes smaller and smaller. Howe
their product varies quite slowly and remains almost cons
when l is large. Therefore, this set of equations~30b! and
~31b! fails in convergence and is not recommended.

B. Proportional relations of angular and radial functions

Numerically, the radial functions Rmn
(1)(c,j) and

Rmn
(2)(c,j) can be computed using the equations@2#

Rmn
~1!~c,j!5Smn~c,j!/kmn

~1!~c!, ~32a!

Rmn
~1!~2 ic,i j!5Smn~2 ic,i j!/kmn

~1!~2 ic !, ~32b!

Rmn
~2!~c,j!5Smn~c,j!/kmn

~2!~c!, ~32c!

Rmn
~2!~2 ic,i j!5Smn~2 ic,i j!/kmn

~2!~2 ic ! ~32d!

together with the coefficientskmn
(1) andkmn

(2) given by

kmn
~1!~c!5

~2m11!~n1m!!

2n1md0
mn~c!cmm! S n2m

2 D ! S n1m

2 D !

3( 8
r 50

`

dr
mn~c!

~2m1r !!

r !
,~n2m! even,

~33a!
f

n

r,
nt

kmn
~1!~c!5

~2m13!~n1m11!!

2n1md1
mn~c!cm11m! S n2m21

2 D !

1

S n1m11

2 D !

3( 8
r 51

`

dr
mn~c!

~2m1r !!

r !
, ~n2m! odd

~33b!

and

kmn
~2!~c!5

2n2m~2m!! S n2m

2 D ! S n1m

2 D !d22m
mn ~c!

~2m21!m! ~n1m!!cm21

3( 8
r 50

`

dr
mn~c!

~2m1r !!

r !
, ~n2m! even,

~34a!

kmn
~2!~c!52

2n2m~2m!! S n2m21

2 D ! S n1m11

2 D !

~2m23!~2m21!m! ~n1m11!!

3
d22m11

mn ~c!

cm22 ( IH

r 51

`

dr
mn~c!

~2m1r !!

r !
,

~n2m! odd. ~34b!

It is found numerically that Eqs.~32a! and~32b! are eas-
ily computed if the prolate and oblate angular functions
obtained. Therefore, they are highly recommended. Also
seen that in the computations, only the intermediate par
etersdr

mn(c) and dr
mn(2 ic) ~where r starts from22m for

evenn2m and from22m11 for oddn2m) are needed.

C. Power and Legendre functional series representations

1. Legendre functional series of radial functions
of the second kind

Since Rmn
(1)(c,j) and Rmn

(1)(2 ic,i j) can be obtained di-
rectly from the spherical Bessel functionsj n(j), we will
concentrate on the spheroidal harmonics of the second
Rmn

(2)(c,j) and Rmn
(2)(2 ic,i j) only. The following relations

were derived by Flammer in 1957@2#:
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Rmn
~2!~c,j!5

1

kmn
~2!~c!

F ( 8
r 522m,22m11

`

dr
mn~c!Qm1r

m ~j!1 ( 8
r 52m12,2m11

`

drur
mn~c!Pr 2m21

m ~j!G , ~35a!

and likewise

Rmn
~2!~2 ic,i j!5

1

kmn
~2!~2 ic !

F ( 8
r 522m,22m11

`

dr
mn~2 ic !Qm1r

m ~ i j!1 ( 8
r 52m12,2m11

`

drur
mn~2 ic !Pr 2m21

m ~ i j!G . ~35b!
e

h

e

ha
si
e

ia
oo
e

n

f

-
d
not

an
In the above expressions, the defaulted setting of the L
endre type in numerical computations forPn

m(j) andQn
m(j)

should be changed from the real type~where there are branc
cuts from2` to 21 and11 to 1`) to the complex type
~where there is a branch cut from2` to 11). Otherwise,
complex values of the associated Legendre functionsPn

m(j)
and Qn

m(j) (j>1) will be obtained, which is shown to b
untrue. In versions 3.0 or 3.01 ofMATHEMATICA , the de-
faulted definition of the associated Legendre function
been changed as compared with that in the previous ver
from 2.0 to 2.2.3. Corresponding changes should be mad
accordance with the definitions by Flammer.

This method for computing the prolate and oblate rad
spheroidal harmonics of the second kind is also a very g
choice, since it provides an independent evaluation wh
only dr

mn and the associated Legendre functionsPn
m andQn

m

are needed.

2. Power series of radial functions of the first kind

Besides the above expression, another representatio
the radial spheroidal functions is the series expression
terms of its powers ofj221 for prolate coordinates and o
j211 for oblate coordinates, given, respectively, by

Rmn
~1!~c,j!5

~j221!m/2

kmn
~2!~c!

(
k50

`

~21!kc2k
mn~c!~j221!k

3H 1, ~n2m! even

j, ~n2m! odd, ~36a!
g-

s
on
in

l
d

re

of
in

Rmn
~1!~2 ic,i j!5

i m~j211!m/2

kmn
~2!~2 ic !

(
k50

`

c2k
mn~2 ic !~j211!k

3H 1, ~n2m! even

i j, ~n2m! odd, ~36b!

wherec2k
mn with real and imaginary argumentsc and2 ic is,

given, respectively, by Eq.~20! in terms of the coefficients
dr

mn(c) and dr
mn(2 ic), while kmn

(1)(c) and kmn
(1)(2 ic) are

given, respectively, by Eqs.~33a! and ~33b!.
As compared with Eqs.~29a! and~29b!, the above expres

sions in Eqs.~36a! and ~36b! are not so straightforward an
require longer computation time. Therefore, they are
highly recommended in the numerical implementation.

3. Power series of radial functions of the second kind

The radial spheroidal harmonics of the second kind c
also be expressed as follows:

Rmn
~2!~c,j!5

1

2
Qmn~c!Rmn

~1!~c,j!logS j11

j21D1gmn~c,j!,

~37a!

Rmn
~2!~2 ic,i j!5Qmn* ~2 ic !Rmn

~1!~2 ic,i j!S logj2
p

2 D
1gmn~2 ic,i j!. ~37b!

The intermediate functionsQmn(c) and Qmn* (2 ic) are de-
fined by
Qmn~c!5
@kmn

~1!~c!#2

c (
r 50

m

ar
mn~c!

~21!m2r 11

r ! @2m2r~m2r !! #2 H ~2m22r !! ~n2m! even

~2m22r 11!! ~n2m! odd,
~38a!

Qmn* ~2 ic !5~21!m
@kmn

~1!~2 ic !#2

c (
r 50

m ar
mn~2 ic !

r ! @2m2r~m2r !! #2 H ~2m22r !! ~n2m! even

~2m22r 11!! ~n2m! odd,
~38b!

where

ar
mn~d !5H dr

dxr

1

F (
k50

`

c2k
mn~d !xkG2J

x50

. ~39!

The other intermediate functionsgmn(c) andgmn(2 ic) are defined by
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gmn~c,j!5~j221!2m/2(
r 50

`

br
mn~c!~j221!r H j, ~n2m! even

1, ~n2m! odd,
~40a!

gmn~2 ic,i j!5~j211!2m/2(
r 50

`

~21!r 2m/2br
mn~2 ic !~j211!r H i j, ~n2m! even

1, ~n2m! odd,
~40b!

with

br
mn~d !52

1

kmn
~2!~d !

H (
r 50

`

d2r
mn~d !F r ~r 1m11/2!~2m12r 21!!

2m21~m21!! ~2r 11!!

52
r ~r 11!~r 1m21/2!~r 1m11/2!~2m12r 22!!

2m21~m21!! ~2r 11!!
1 (

k50

[ ~m12r 21!/2]
~2m14r 24k21!~2m12r 22k21!!

2mm! ~2k11!~m12r 2k!~2r 22k21!!
G

2 (
k5m11

`

rru2r
mn ~d !

~2r 21!!

2mm! ~2r 22m21!!
J , ~n2m! even, ~41a!

br
mn~d !52

1

kmn
~2!~d !

H (
r 50

`

d2r 11
mn ~d !F ~r 11!~r 1m11/2!~2m12r !!

2m21~m21!! ~2r 12!!
2

~r 11!~r 1m11/2!@2m1r ~r 1m13/2!#

2m21~m21!!

3
~2m12r 21!!

~2r 11!!
1 (

k50

[ ~m12r !/2]
~2m14r 24k11!~2m12r 22k!!

2mm! ~2k11!~m12r 2k11!~2r 22k!!
G

2 (
k5m11

`

rru2r 21
mn ~d !

~2r 22!!

2mm! ~2r 22m22!!
J , ~n2m! odd, ~41b!
cs
b

a-

b
os

c

un

c-
d

where the symbold stands for eitherc or 2 ic.

D. Representation using its differential equation

In a similar fashion to the angular spheroidal harmoni
the radial spheroidal functions of various kinds can also
obtained from the solution of the following differential equ
tion:

d

djF ~j221!
d

dj
Rmn

~ i ! ~c,j!G
2Flmn2c2j21

m2

j221
G Rmn

~ i ! ~c,j!50. ~42!

To uniquely determine this, the boundary conditions must
utilized. Although some boundary conditions such as th
in his equations~4.16.13!–~4.16.16b! were provided by
Flammer@2#, they are not recommended for use here sin
each of them consists of the parametersdr

mn(c) and
dr

mn(2 ic). If these parameters have been obtained, it is
necessary to solve the equation numerically.

In Ref. @10# the conditions

uRmn
~1!~c,1!u,`

and
,
e

e
e

e

-

Rmn
~1!~c,1!5

1

cj
cosS cj2

n11

2
p D1O~j22!, j→`

~43a!

were suggested to determineRmn
(1)(c,j) uniquely and

Rmn
~3!~c,1!5

1

cj
expF i S cj2

n11

2
p D G1O~j22!, j→`

~43b!

to determine Rmn
(3)(c,j) uniquely. The rest functions

Rmn
(2)(c,j) andRmn

(4)(c,j) can be obtained from Eqs.~30a! and
~31b! or by using the forms of 1/cj sin„cj2 @(n11)/2#p…

and 1/cj exp†i „cj2@(n11)/2#p…# similar to the boundary
conditions of Eqs.~33a! and ~33b!.

TABLE IV. Comparison of calculated values of the radial fun
tion of the first kindR02

(1)(3,j), with corresponding values tabulate
by Flammer~1957!.

j R02
(1)(3,j)

Computed Flammer~1957!

1.005 0.329 514 0.3295
1.020 0.334 628 0.3346
1.044 0.342 106 0.3421
1.077 0.350 931 0.3509
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TABLE V. Comparison of selected values ofRmn
(2)(c,j) computed by Flammer~1957!, MacPhie and

Do-Nhat, and the present authors.

c (m,n) j Rmn
(2)(c,j)

Flammer MacPhie and Do-Nhat This paper

1.0 ~2,2! 1.005 2375.0 2374.977 23 2374.977 22
2.0 ~2,2! 1.005 248.52 248.522 271 248.522 268
3.0 ~2,3! 1.005 237.45 237.413 938 237.428 719
4.0 ~2,3! 1.005 213.34 213.331 298 213.339 979
u
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E. Numerical computation and comparison
with Flammer’s data

To show the efficiency of this program, we have calc
lated many data points ofRmn

(1)(c,j) by using Eq.~29a!. In
Table IV, as an example, the calculated results ofR02(3,j)
are compared with those tabulated by Flammer@2#. A very
good agreement between the two sets of results has
obtained. In a similar fashion, the current results have a
ter accuracy and higher precision.

VII. DERIVATIVES OF ANGULAR AND RADIAL
SPHEROIDAL HARMONICS

It has been concluded that Eqs.~16a!, ~16b!, ~17a!, ~17b!,
~29a!, ~29b!, ~32c!, and~32d! are desirable equations to com
pute Smn(c,h) and Smn(2 ic,ih), Smn

(2)(c,h) and
Smn

(2)(2 ic,ih), Rmn
(1)(c,h) andRmn

(1)(2 ic,ih), andRmn
(2)(c,h)

and Rmn
(2)(2 ic,ih). Therefore, their first-order derivative

can be obtained directly by taking the first-order derivativ
of the associated Legendre functions and the spherical Be
functions, respectively.

Although Eqs.~38a! and~38b! serve as the most straigh
forward formulas to compute prolate and oblate radial sp
roidal functions of the second kind~as can be seen from th
listed references!, prolate and oblate radial spheroidal ha
monics of the second kind can also be obtained from E
~32c! and ~32d!. Also the following functional forms of the
Wronskian test values of the radial functions of the first a
second kinds are also frequently employed to comp
Rmn

(2)(c,h) andRmn
(2)(2 ic,ih):

Rmn
~1!~c,h!

d

dj
Rmn

~2!~c,h!2Rmn
~2!~c,h!

d

dj
Rmn

~1!~c,h!

5
1

c~j221!
, ~44a!
-

en
t-

s
sel

-

s.

d
te

and

Rmn
~1!~2 ic,ih!

d

dj
Rmn

~2!~2 ic,ih!2Rmn
~2!~2 ic,ih!

3
d

dj
Rmn

~1!~2 ic,ih!5
1

c~j211!
. ~44b!

VIII. NUMERICAL COMPUTATION AND COMPARISON
OF Rmn

„2…
„C,j… CALCULATED WITH MORE

RECENT DATA

In a recent paper, the accuracy of the values
Rmn

(2)(c,j) provided by Flammer@2#, and again reproduced in
Abramowitz’s handbook@22#, was argued by MacPhie an
Do-Nhat@25#. It was claimed that the values given by Flam
mer were inaccurate.

MacPhie and Do-Nhat@25# then recalculatedRmn
(1)(c,j)

andRmn
(2)(c,j) using double precision, and a slightly differe

expansion series in which the functionsQr 1m
m (j) and

Pr 2m21
m in Eq. ~35a! are expanded aroundj51. Readers

who are interested in this topic can refer to Ref.@25# or @26#
for more details about the alternate expression. In view
this clarification, the set of values printed in Ref.@25# was
recomputed with this program for verification purposes.
example table that compared the results from Flammer, M
Phie and Do-Nhat, and the authors are tabulated in Table
and VI.

A comparison shows that for certain sets ofm,n,c, andj,
all the three sources produced different numerical solutio
This discrepancy prompted us to make a comparison of
computational accuracy for the three sets of solutions
computing the respective Wronskian values and compa
them against the theoretical Wronskian values.

It is observed that the computed Wronskian values us
Flammer’s result, in general, are lower in accuracy wh
TABLE VI. Comparison of selected values ofRmn
(2)8(c,j) computed by Flammer~1957!, MacPhie and

Do-Nhat, and the present authors.

c (m,n) j Rmn
(2)(c,j)

Flammer MacPhie and Do-Nhat This paper

1.0 ~2,2! 1.005 75 740 75 736.490 75 736.490
2.0 ~2,2! 1.005 9738.0 9736.9853 9736.9859
3.0 ~2,3! 1.005 7556.0 7569.0142 7566.0512
4.0 ~2,3! 1.005 2662.0 1232.5894 2662.5329
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TABLE VII. Computed Wronskian values: Comparison of results by Flammer~1957!, MacPhie and
Do-Nhat, and the present authors.

c (m,n) j Wronskian values

Flammer MacPhie and Do-Nhat This paper Theoretica

1.0 ~2,2! 1.005 99.7560 99.7506 99.7506 99.7506
2.0 ~2,2! 1.005 49.8768 49.8753 49.8753 49.8753
3.0 ~2,3! 1.005 33.2374 33.2502 33.2502 33.2502
4.0 ~2,3! 1.005 24.9352 18.2335 24.9377 24.9377
o

e
a

th
le

o

n
th

ob

o

e
y

clu-
ted

-

n of

he

eo-
compared with the other two. The difference from the the
retical Wronskian value increases when the value ofc in-
creases. Thus MacPhie and Do-Nhat’s claim was verifi
Their values achieve a double precision accuracy for sm
value ofc. However, their value decreases in accuracy as
value ofc becames larger. One example is shown in Tab
VI and VII where n53, m52, j51.005, andc54.0. The
Wronskian value computed from the authors’ values

Rmn
(2)(c,j) and Rmn

(2)8(c,j) is generally more accurate tha
MacPhie and Do-Nhat’s computation and, to date, this is
most accurate computation ofRmn

(2)(c,j) for arbitrary values
of c known in the literature. No decrease in accuracy is
served when the value ofc increases.

It should be noted that for more accurate values
Rmn

(2)(c,j) ~especially for the rangesc51,2,3, and 4,m<2,
and n<2), one should refer to the printed tables publish
by MacPhie and Do-Nhat@25#, instead of the tables given b
Flammer@2#. However, the values ofRmn

(2)(c,j) tabulated by
MacPhie and Do-Nhat in the rangesm52, n53, and c
-

d.
ll
e
s

f

e

-

f

d

53,4, and 5 are found to be rather inaccurate. This con
sion was arrived at after the Wronskian values compu
using MacPhie and Do-Nhat’s values ofRmn

(2)(c,j) and

Rmn
(2)8(c,j) were found to differ from the theoretical Wronsk

ian value by quite a large margin.

IX. ACCURATE VALUES OF OBLATE SPHEROIDAL
RADIAL FUNCTIONS OF THE SECOND KIND

The claim by MacPhie and Do-Nhat@25# about the inac-
curacy of Flammer’s tabulated values ofRmn

(2)(c,j) prompted
the present authors to recalculate the oblate radial functio
the second kind, i.e.,Rmn

(2)(2 ic,i j). A detailed study of
Flammer’s work led us to discover some errors in t
former’s expression of the special values ofRmn

(2)(2 ic,i0).
Numerical solutions show that his equations~4.6.14! and
~4.6.15b! are incorrect. So we examined the equation th
retically. Using Eq.~32b!, for odd (n2m) we can express
Rmn
~1!8~2 ic,i0!5

Smn~2 ic,i0!

kmn
~1!~0!

5
1

~2m13!~n1m11!! ( 8
r 21

`

dr
mn~2 ic !

~2m1r !!

r !

3F2n1md1
mn~2 ic !~2 ic !m11m! S n2m21

2 D ! S n1m11

2 D !Smn~2 ic,0!G . ~45!

Then by using Eq.~45! and the special values in Eq.~25b!, we can, in a straightforward manner, simplifyRmn
(1)(2 ic,0) to

Rmn
~1!8~2 ic,i0!5

i n2m212mm!cm11d1
mn~2 ic !

~2m13!(
r 51

`

dr
mn~2 ic !

~2m1r !!

r !

. ~46!

Equation~46! should be used instead of the wrong expression given by Flammer@his equation~4.6.14!#. This error in the

expression ofRmn
(1)8(2 ic,0) further resulted in an uncorrected expression ofRmn

(2)(2 ic,0) @see Eq.~4.6.15b!of Ref. @2##. The
correct expression should then be

Rmn
~2!~2 ic,i0!52

1

cRmn
~1!8~2 ic,i0!

5

i n2m11~2m13!(
r 51

`

dr
mn~2 ic !

~2m1r !!

r !

2mm!cm12d1
mn~2 ic !

. ~47!
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This can also be proved using the direct reduction. Ob
ously, we have the following relations:

j n~z!uz→05
2nn!zn

~2n11!!
,

d jn~z!

dz U
z→0

5
2nn!nzn21

~2n11!!
.

~48!

Since

I ~c,j!5
d

djF S j221

j2 D m/2

j m1r~cj!G
5m

~j221!m/2 21

jm11
j m1r~cj!1

~j221!m/2

jm
c jm1r8 ~cj!;

~49!

thus we have

I ~2 ic,i j!uj→05 im
2m11~m11!!

~2m13!!
~ ic !m11d r1

1c
2m11~m11!!

~2m13!!
~m11!~ ic !md r1

52 i
2m11cm11~m11!!

~2m13!!
d r1 , ~50!

whered r1 (51 for r 51 and 0 otherwise! denotes the Kro-
necker delta. Taking the derivative of the radial spheroi
function of the first kind and assumingj50, we have

Rmn
~1!8~2 ic,i0!

5

(
r 51

`

i n2m21dr
mn~2 ic !

~2m1r !!

r !
i I ~2 ic,i0!

(
r 51

`

dr
mn~2 ic !

~2m1r !!

r !

.

~51!

Substituting I (2 ic,i0) in Eq. ~50! into Eq. ~51!, we can
obtain the same form as Eq.~46!.

In adopting MacPhie and Do-Nhat’s approach to est
lishing the accuracy, the oblate Wronskian test value~44b!
is computed using the same parameters provided
Flammer, i.e., m50,1, and 2, n50,1,2, and 3, and
c50.2,0.5,0.8,1.0,1.5,2.0, and 2.5. The Wronskian test va
shows that a comparatively much higher accuracy has b
achieved by us with ourMATHEMATICA package. Good
agreement between the theoretical Wronskian values and
computed Wronskian values are found to full precision
curacy. In addition, it also shows the inaccuracy in Fla
mer’s values, which was already pointed out by MacPhie
Do-Nhat for the prolate case.

X. CONCLUDING REMARKS

In this paper, we reviewed various methods employed
evaluate prolate~or oblate! angular spheroidal harmonics o
i-

l

-

y

e
en

ur
-
-
d

o

the first and second kinds and prolate~or oblate! radial sphe-
roidal harmonics of the first to the fourth kinds, as well
their first-order derivatives and their eigenvalues. Based
this comparative study of the various methodologies, an
ficient algorithm for numerically computing these functio
and eigenvalues is developed with the widely accep
MATHEMATICA package.

First, an exact method, solving the continued fracti
equations, is adopted in the numerical implementation;
algorithm developed is therefore very accurate, quite f
and very efficient for computing eigenvalueslmn of these
spheroidal functions with the complex argumentc ~where
actually the dielectric medium is assumed to be lossy m
rial!. With existing computer facilities, it is found that th
current algorithm employing the fractional function is mo
efficient and accurate, as compared with others available
the argumentc becomes very large~say 10001 i500!, quite
a high oscillation is observed from the functional plot of t
equation. Therefore, the technique for solving the continu
fraction equations actually fails. To overcome this proble
the second algorithm was developed subsequently.

Second, the intermediate parametersdr
mn ~wherer varies

with a step size 2 from22m1l to ` and l 50 for even
n2m and 1 for oddn2m) anddrur

mn ~wherer varies with a
step size 2 from 2m122l to `) are computed with grea
care after an estimation of the eigenvalueslmn . The evalu-
ated data published by Flammer in his appendices@2# have
been considered as referenced results for comparison; t
data have also been reproduced in a very popular and wi
used handbook of mathematical functions by Abramow
and Stegun@22#, with permission from Flammer. Therefore
Flammer’s book@2# has been regarded as a classic text
the spheroidal functions. It is found, however, that the co
puted results of coefficientsdrur

mn , and therefore some of th
radial spheroidal harmonics of the second kindRmn

(2)(s) and

their derivativesRmn
(2)8(s) @where (s)5(c,j) for prolate

spheroidal functions, and (2 ic,i j) for oblate spheroidal
functions# are quite inaccurate, e.g.,R00

(2)(5,1.077) has a rela

tive error of 9.79% while its derivativeR00
(2)8(5,1.077) has a

relative error of 37.57%.
Third, it is found that the existing personal computin

facilities are capable of evaluating the angular and rad
spheroidal harmonics of the first kindSmn(c,h) @or
Smn(2 ic,h)] and Rmn

(1)(c,j) @or Rmn
(1)(2 ic,i j)] in terms of

the series of the associated Legendre functionsPn
m(h) and

the spherical Bessel functionsj n(j). However, for angular
and radial spheroidal harmonics of the second kindSmn

(2)

3(c,h) @or Smn
(2)(2 ic,h)] and Rmn

(2)(c,j) @or Rmn
(2)

(2 ic,i j)], computation in terms of the associated Legend
functions Pn

m(h) and the intermediate parametersdr
mn and

drur
mn is highly recommended.

Finally, the values of the oblate spheroidal wave functio
of the second kind provided by Flammer@2# were found to
be inaccurate. In view of this inaccuracy, the authors of t
paper recalculated oblate radial functions of the second k
and their derivatives using the same parameters. The va
obtained were then verified by using Wronskian test valu
Also, various values provided by the programs attached
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Refs. @20# and @8# were also verified. It is found that th
existing programs are quite useful to a certain extent in m
ing the requirement of accuracy, but a few discrepancies
still found, for example, the values produced in Ref.@25#.
Using Wronskian test values, it is shown that the algorit
developed in work with theMATHEMATICA package achieve
the best accuracy to a full precision. While the other p
grams cannot be used to compute the spheroidal harmo
in lossy media, this algorithm can be utilized instead. Al
the algorithm works very well for both small and very larg
c’s.

Some typographical errors in Ref.@2# should also be
pointed out. The following list indicates the corrections
those errors to our awareness:~i! There is a missing minus
sign in Eq. ~3.1.7! of Ref. @2#. ~ii ! The second factoria
.

J.
t-
re

-
ics
,

@(n2m)/2#! in Eq. ~4.2.2a! of Ref. @2# should be read as
@(n1m)/2#! ~iii ! The denominatork (2)(2 ic) in Eq. ~4.2.7!
of Ref. @2# should be read askmn

(2)(2 ic). ~iv! The term

sin
coscos(m11)f of M

o
em11,nf
(1( i )

should besin
cos(m11)f. ~v! The

correct form of the radial functionR03,
(2) in Table 103 of Ref.

@2# should beR02
(2) . ~vi! Equations~4.6.14! and ~4.6.15b! of

Ref. @2# should be corrected to our equations~46! and ~47!.
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