PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998

Computations of spheroidal harmonics with complex arguments:
A review with an algorithm
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This paper not only reviews the various methodologies for evaluating the angular and radial prolate and
oblate spheroidal functions and their eigenvalues, but also presents an efficient algorithm which is developed
with the software packageATHEMATICA. Two algorithms are developed for computation of the eigenvalues
Amn and coefficientsd™". Important steps in programming are provided for estimating eigenvalues of the
spheroidal harmonics with a complex argumerfturthermore, the starting and ending points for searching for
the eigenvalues by Newton’s method are successfully obtained. As compared with the published data by
Caldwell[J. Phys. A21, 3685(1988] or Presset al. [Numerical Recipes in FORTRAN: The Art of Scientific
Computing(Cambridge University Press, Cambridge, 199%or a real argumentand OguchiRadio Sci.5,

1207 (1970] (for a complex argumentthe spheroidal harmonics and their eigenvalues estimated using this

algorithm are of a much higher accuracy. In particular, a lot of tabulated data for the intermediate coefficients
g}?, the prolate and oblate radial spheroidal functions of the second kind, and their first-order derivatives, as

obtained by FlammdiSpheroidal Wave FunctioriStanford University Press, Stanford, CA, 19Bare found

to be inaccurate, although these tabulated data have been considered as exact referenced results for about half

a century. The algorithm developed here for evaluating the spheroidal harmonics witiathEMATICA

program is also found to be simple, fast, and numerically efficient, and of a much better accuracy than the other

results tabulated by Flammer and others, being able to produce results of 100 significant digits or more.

[S1063-651X98)05511-1

PACS numbdis): 02.70.Rw

I. INTRODUCTION late (or oblate radial (or angulay functions is involved in the
eigenvalue computation and the forward and backward re-
Spheroidal harmonics are special functions in mathematieursion formulation. Theoretically, the formulation of these
cal physics which have found many important and practicaharmonics was well documented by J. A. Stratetral. ear-
applications in science and engineering where the spheroidigr in 1956[1] and Flammer in 19572]. The computation
coordinate system is used. In the evaluation of electromag?f the eigenvalue$3—6] and the first-order derivatively—
netic fields in spheroidal structures, spheroidal wave funcd8l (of the angular and radial spheroidal wave functjons
tions are frequently encountered, especially when th&SINGFORTRAN andc programs have been very difficult.
boundary-value problems in spheroidal structures are solved Pregrams available to the public for numerically comput-
using full-wave analysis. By applying the separation of vari-f[ﬂg ign(e)\r/\c/)ilr:jgl g?r;n%‘;i:;itﬁzg:r%gggg’g?iﬁg&ig?&ﬁg to
ables to Maxwell's equations of either the electric or mag-Cently published in 1992 by Baker, who provided many use-

netic field, two types of spheroidal harmonics, i.e., prolateful routines and codes ia language for computation of spe-

and oblate functions corresponding to their respective COO%ial functions including the spheroidal harmonics and their

dinates.system, can be_ obtained. Symboligally, one typg Oiigenvalues(ii) a popular handbook series of routines and
harmonics can be obtained from another simply by making,, e jrgasic, ¢, ForTRAN, andPascaL (see Ref[19)): (iii)
the changes— —ic andé—ié&. Computationally, the values wo newly published handbooks, one by Zhang and 20}

of the prolate and oblate spheroidal wave functions are caly 4 4nother by Thompsof2l], in which the authors in-
culated in quite different ways. ’

| bl heroidal di h cluded a large number 6ORTRAN programs that are capable
In prolate (or oblatg spheroidal coordinates, the separa- ¢ 50y jating a wide variety of special mathematical func-

tion of the variables results in three independent functionst'ions to a reasonable degree of accuracy. Other programs
(1) the radial spheroidal function R{)(c,&) [or  mentioned in the references are in general not directly acces-
RO(—ic,ig)] (i=1,2,3,4); (2) the angular spheroidal sible to the public, and therefore obtaining the source codes
function Sy(c,§) [or Syn(—ic,€)] [also referred to as the s not very convenient.
generalized Legendre functioR;'(c,&)]; and (3) the sine Basically, there are five methods available for evaluating
and cosine functions. The last pair of trigonometrical func-the eigenvalues of spheroidal harmoni¢s: exact evalua-
tions (sine and cosineis well known, but the first two are tion, on solving the transcendental equation in continued
not so easily computed. Computation of the spheroidal profraction form[1,2] or its equivalent[10]; (i) an accurate
evaluation by the relaxation methd®,8,19; (iii) an ap-
proximate evaluation by power series expansion
*FAX: (+65) 779 1103. Electronic address: LWLi@nus.edu.sg [5,14,17,18,2% (iv) an approximate estimation by
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asymptotic expansion$,22]; and (v) a systematic evalua- Az
tion by casting the eigenvalue problem in a tridiagonal, sym- 8=0  @=const
metric matrix[5]. The results of the first method are very
accurate, and have been used as referenced data for compari-
son[7,12,13. The second method, developed by Caldwell
[3], has become very popular recently, and has been imple-
mented into the programs of both Reff&9] and[8]; it con-
verges quickly and gives reasonably good agreement be-
tween the evaluated resuli3,8,19 and the exact results of
Flammer[2], even when the value @f becomes quite large.
The third method has the advantage of rapid convergence
when the value of? is small, but its convergence becomes
quite slow or the method may even fail whe# is large
(e.g., c=10) [5,6,14,17,18 The fourth method provides
simple and easy-to-use formulas for the evaluation of the
eigenfunctions, but it is valid only for smatfs. The fifth FIG. 1. Prolate spheroidal coordinates &, /).
method, suggested by Hodd&], reduces the eigenvalue
problem to that of finding the eigenvalues of a r@alimagi-  an exact computation technique is adopted in this paper to
nary), tridiagonal symmetric matrix. Thus it allows for well- evaluate the spheroidal harmonics and their eigenvalues. An
known procedures, which are rapid and accurate, to be usesfficient program routine consisting of functional commands
for the eigenvalue computation. It is more direct and systemof eigenvalues\, angular S,,(c,£) and radial Rﬁri])n(cf)
atic in comparison with other methods. Furthermore, it iSspheroidal harmonics, and their first-order derivatives has
considered to be a valuable tool when the computation oheen developed. In particular, some important steps and ini-
numerous eigenvalues is required. tial values in numerical implementation, such as the Newton
Although there have been many published papers on connethod for eigenvalues, are given. Both the prolate and ob-
putations of the eigenvalues of spheroidal harmonics ovepzte coordinate systems are considered. In the computation,
the past several decades, almost all of them are valid Only fqhere iS no restriction on the dielectric propert(és_, the
the real argument. To the authors’ knowledge, however, medium can be eithelosslessor lossy and the accuracy
there are two exception23]: one is the evaluation published remains very high when the value of is very large. Al-
by Oguchi in 1970[6], and the other by Eglaypd]. The  though the routines for computing the eigenvalues and the
former, using one infinite power series expansion for smalkpheroidal functions are not attached herein due to the length
c? and two asymptotic expansions for largé to compute  restriction, the complete software routine package will soon

the complex eigenvalues, does not seem to be systematic apg available from thevATHSOURCE on the Web Page of
accurate enough, since the boundary for small and large valy/olfram’s MATHEMATICA .

ues of ¢ is not clear [lim, o[Amn(c)]=n(N+1)

+ (c?/2) (1- [(2m—1)(2m+1)/(2n—1)(2n+3)]) and
lIMe._.[Amn(c)]=(2n—2m+1)c]. The latter was pub-
lished in Russian and thus has a limited readership, although
it did compute the complex eigenvalues. The prolate spheroidal coordinates shown in Fig. 1 are

For a numerical computation of the spheroidal angulafelated to the rectangular coordinates by the following trans-
and radial functions, a similar situation exists, since compuformations:
tation of both functions involves the eigenvalueg,. Sev-
eral programs have been developed, as listed in the literature d
[7-18], but only a few of them are obtainable. Most impor- x=V(1- 7°)(£°~1)cos ¢, (13
tantly, the programs available in the literature for evaluation
of the spheroidal harmonics are applicable only to real argu- q
ment problems where the permittivity of each spheroidal re- = J(1- A (E—1si
gion is losslessi.e., Im(c)=0 under prolate spheroidal co- Y=2 1=7) (&~ Dsin ¢, (1b)
ordinates, or Ref) =0 under oblate spheroidal coordindtes
Also, so far there is no commercial software suchvasLE, d
MATHCAD, MATLAB, and MATHEMATICA available for com- z=57¢, (19
putation of these spheroidal harmonics.

Nowadays, computer facilities are better, and there is ith
need to know which program or algorithm for computing
these functions is the best with the current computer re-
sources. In this connection, a comparison of the existing
methods for computing spheroidal harmonics and their ei- . .
genvalues is made in this paper. SiNG&THEMATICA Soft- whereas the oblate spheroidal coordinates are related by

ware contains many symbolic and numerical built-in routines

with simple commands or kernels, and is one of the most _ EW
popular and mathematically powerful packages worldwide, X=2 (1= (& +cos ¢, 23

y=1/2

<

L \W=const

II. SPHEROIDAL COORDINATES AND
SPHEROIDAL HARMONICS

—1lsy<1, 1s{<w, 0s¢=2mw, (1d)
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d .
y= E\/(1—772)(524— 1)sin ¢, (2b)
_d 2

= E 7]5, ( C)

with
—lsysl, Osé<», Os¢<27 (2d)

or

Os7y=<1l, —o<¢{<w, Os¢=27. (2¢)

With these coordinate systems, the Helmholtz scalar wave
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equation becomes separable. The solutions of the wave equa-

tion are expressed by the scalar wave functions

cos
Umn= Smn(C, 7)Rmn(C,€) sinm¢ (38
for prolate spheroidal coordinates, and
) . .._.cos
¢mn:Srnn(_|C-n)Rmn(_|Cv|f)sinmﬁb (3b)

for oblate spheroidal coordinates, respectively. The four

Rmn(C,€), and

functions  S,(C,7), Smn(—ic,m),

Rmn(—ic,i§), satisfy the following ordinary differential

equations:
d m?
ﬁ (1_772)asmn(c-77) +_7\mn_02772_ 1_772
X Smn(c,7)=0, (43
4l e g9 NP
d§|:(§ 1) ngmn(Cag) _)\mn c g + 62—1
XRmn(c,£)=0 (4b)
and
d 2 d : 2.2 ?
dn (1-7 )ﬁsmn(_lcin) t Amnt o= =7
X Sy —ic,7)=0, (5a
i(§2+1)iR (—icig)}— Nmn— C2€%— m
d¢ de mn K mn £2+1
XRmn(—ic,i§¢)=0. (5b)

Ill. EIGENVALUES OF SPHEROIDAL HARMONICS
OF COMPLEX ARGUMENT

A. Algorithm | using transcendental equation

The separation constanis,, in the above two pairs of

equations are the eigenvalues of grelate andoblatesphe-

Ul()\mn)+U2()\mn):01 (6)
where
Br-m
Ul(xmn):'ym— ~ANmn—
e ')’rTfmfz_)\mn_
> BrT—m—Z ﬁrT—m—4 L
'Ynm—m—4_)\mn_ 7nm—m—6_)\mn_ ,
(79
Bnmfm+2 ﬁnmfm+4
Uo(Amn) = — m m
Yn-m+2~" Amn— Yn-m+a~ Nmn—
B
n—-m+6 (7b)

7nm—m+6_)‘mn_
In Egs.(7a) and(7h), the compact notation

b d f h
a__
c— e—

g_—i—

denotes the continued fraction

and the intermediates;" and y," are defined according to
Flammer[2] by

r(r—1)(2m+r)(2m+r—1)

Br'= c’,
(2m+2r—1)%(2m+2r—3)(2m+2r+1)
(r=2) (8a)
C2
y[”=(m+r)(m+r+1)+?
1 4m°—1 =0 8b
|1 emrar—Demrarry) (50 @D

As can be seen from the transcendental equation, the so-
lution can be found by expanding the eigenvalhgg into a
Taylor series and then solving the polynomial equation,
which was discussed by several published papers. The de-
tailed expansion with a few given coefficients was addressed
by Flammer[2]. However, the expansion is accurate only
when the value of? is not very large. When? is very large,
the Taylor series expansion technique fails because the series
representation does not converge. In a similar fashion, the
relaxation method3,19] is also not accurate wheit is very
large.

However, the solution for ang® can be found by solving

roidal angular and radial functions. These eigenvalues sat- the transcendental equati¢®) directly. Newton’s numerical

isfy the transcendental equation

technique can be employed to solve for its roots efficiently,
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where the estimated value af,,, and the starting and end 1000. If this number is larger, other modifications must be
points of the iterative technique are found to be made. This is because when the valueca$ large, the re-
quired accuracy foi g, in Eq. (9b) must be exceptionally
high in order for Newton’s method to evaluate the correct
eigenvalues. Hence, the original formulation Xaf,, is no
longer accurate enough in the cases whér 1000. Under
this condition, it is found that to solve for the eigenvalue by
., (9b) Newton’s method is impractical. This is because there are

many very closely spaced roots of K@) in a narrow range,

so that a very accurate initial guess is necessary for comput-
. (99 ing the eigenvalue.

Thus, in the case of?>1000, the method proposed by

The values of egimae Mewn aNAengare tested in the pro- Hodge[5] represents a more appropriate way of solving for
gram many times, and finally the above values are foundthe eigenvalues. A brief description of this method is given

The routine for finding the roots,, in Eq. (6) is available in ~ SuPsequently. _ _
Wolfram’s web page. Substitution of Eq(16a into Eqg. (4a yields the follow-

As seen from the program, the routine consisting ofing recurrence relation for the angular function expansion
simple statements is very compact. The advantage of thePefficients:

(9a)

C
Nestimaie= N(N+1) + RG{E )

(2m—1)(2m+1)

1= (2n—1)(2n+3)

Nstar=N(N+1)— c?

(2m—1)(2m+1)
~ (2n—1)(2n+3)

Nen=N(N+1)+c?| 1

softwareMATHEMATICA has already been taken into consid- m mn me Ay mn
eration since the command “Fold” provides a simple and A/(c)dh(e) +[Br(c) —Apmp(c)]d M (c)
efficient implementation of the continued fraction. +CM(c)dM(c)=0, r=0, (10)

To see if the program is efficient, the eigenvalugg, of
the spheroidal harmonics are computed. The results are com#here
pared with the data available elsewhere in the publications in

Ref. [19] for real argument, and in Ref.[6] for complex AM(¢) = (2m+r+2)(2m+r+1) o (114
argumentc. r (2m+2r+3)(2m+2r+5) "’
For the real argument af, as shown in Table I, the cur-
rent routine produces exactly the same results as Flammer m . 2(m+ rN(m+r+1)—2m?-1 )
and is much better than the routine “sfroid” of the Numeri- Br(c)= (2mm+2r —1)(2m+2r + 3) ¢
cal Recipg19]. Also, the comparison between the currently
computed results and Flammer’s results shows an excellent +(m+r)(m+r+1), (11b
agreement, but the current routine has the capability of pro-
ducing results of 100 significant digits or more. CM(c)= r(r—1) 2 (116
For the complex argument af as shown in Table I, this r 2m+2r—-3)(2m+2r—1) " °
routine produces exact resulfg4]. The comparison also
shows that Oguchi’s results of eigenvalues for complex arNow, let
guments are also good enough.
Dq:C2q+Sv (123
B. Algorithm Il using recursive matrix equation Eq= quﬁ’ (12b)
However, it should be pointed out that the above initial
guesses in Eq$9a)—(9¢) are only valid where? is less than Fa=Axq+s- (120

TABLE I. Comparison of selected values of eigenvalyg, computed by Flamme{1957, the Cam-
bridge Numerical Recipe, and the present authors.

c (m,n) Amn
Flammer(1957 Numerical Recipe This paper
-1.0 (4,11 131.560 131.554 131.560 008 09
0.10 2,2 6.014 27 6.014 27 6.014 266 631 4
1.00 1,2 2.19555 2.19555 2.195 548 355
2,2 6.140 95 6.140 95 6.140 948 992
2,5 30.4361 30.4372 30.436 145 39
4.00 1,2 2.734 11 2.734 11 2.734 111 026
2,2 6.542 50 6.542 53 6.542 495 274
16.0 1,2 4.399 59 4.399 61 4.399 593 067

2,5 36.9963 37.0135 36.996 267 50
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c is omitted from the above equations for simplicity. Thus expression by EqF;- - ~Fq_1/D1D2D3--~Dq)1’2, the fol-

the recurrence equatiqd0) becomes lowing form of the recursion relation is obtained:
1/2
De@q 1+ (Eq—Amn)@q+Fqaq:1=0, q=0. (13 (DgFq-1)""g-1+ (Eq=A)bg
+(Dq+1Fq)1/2bq+1:O- qZO. (14)

By a change of variables az=(DiD;D3---Dy/
FoF1Fgq-1) l’zbq in Eq. (13), and multiplying the resulting The above equation can be written in matrix form as follows:

[ (Eq—\) (D4Fg)*? 0 0 o

(DiF™ (E;-N) (DFp™ 0 ... | |Po] |0O

0 (DFYY (E;~\) (DaFp¥2 .| | P2f | O

0 0 (DsF¥ (E;-n) -+ |P2| |0
bs(=|0 (15)

When the matrix in Eq(15) is obtained, the eigenvalie  ing methods, namely(i) the series expressions in terms of
can then be evaluated directly and accurately using the conassociated Legendre functions, afit) the power series

mand “Eigenvalue” inMATHEMATICA . representations, are normally used.

A compact program capable of fast computation of eigen-
values for largec has been developed. The results produced A. Series representation in terms of associated
by the program agree well with the existing tabulated results Legendre functions

in the literature[20,5,4. As a sample of input-output, the i .
eigenvalues have been computed for the cases wirere The angular spheroidal function, as documented by Flam-
=123 n=34. 2223 and c mer [2], can be represented as a series of the associated

=05.1.0.2.5.5.0.10.0 25.0.50.0. and 100.0. The results ConJ.r_egendre functions of different orders. The relations between

puted are compared with the values in Tables 15.1-15.4 dhe angular spheroidal functions of the first and second kinds

the handbook by Zhan@0]. It is found that the values are in and the associated Legendre functions of different orders are
good agreement. Like our previous routine of fractional cal-9iven for the prolate and oblate spheroidal coordinates as

culus, this routine also has the advantage of producing rd@llows: For the first kind,
sults of 100 significant digits or more.

Sma(Cm)= 2" dP(c)PR, A7), (168
IV. CALCULATION OF ANGULAR /=01
SPHEROIDAL HARMONICS
To compute the angular spheroidal harmonics of the first Son(—iC,7)= 2/ mn, _ m .
. . ') dy"(=ic)Pny A(7); (16D
and second kinds, i.eSyn(c,7) andS{?)(c, 7), the follow- " Son m+s

TABLE II. Comparison of calculated eigenvalugs,, with corresponding values tabulated by Oguchi

(1970.
c (m,n) Eigenvalues\
Oguchi(1970 Computed
1.824 770-i2.601 670 (0,0 1.705 180-i4.220 186 1.701 836i4.219 998
2.094 267-i5.807 965 0,2 1.998 518-i8.578 716 1.993 904i8.576 325
5.217 093-i3.081 362 (0,2 23.91582-i18.743 32 23.910 28i18.741 94
3.563 644-i2.887 165 (0,2 10.140 83-i11.121 58 10.137 05i11.122 16
1.998 555+i4.097 453 1,2 2.915 318-i6.133 951 2.919 098i6.134 851
3.862 833+i4.492 300 1,2 12.201 09-i16.244 07 12.196 94i16.245 34

2.136 98'#15.449 457 2,2 6.102 540-i7.684 763 6.098 946i7.684 379
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and for the second kind,

o]

s2c,m= 2’

/[ =—o

d7"(c)Qms ()

[

= >

/=-2m,—2m+1

d7"(c)Qmy A7)

©

+ X dMe)PY (),
/=2m+2,2m+1
(173

©

Sa(—ic, = >

/=—

d7"(—ic)Qmy A7)

[

= >

/=-2m,—2m+1

d7"(—ic)Qmy A7)

©

+ X di—ic)PT (7)),
/=2m+2,2m+1

(17b
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The intermediate parametd}'" is an important quantity fre-
guently used in the formulation of the prolai@nd oblate
angular(and radial spheroidal harmonics of various kinds.
Thus an independent section has been proposed so as to for-
mulate and evaluate the parametglt”. This issue will be
addressed later.

The above series representation of the angular spheroidal
harmonics are widely adoptd®-18| in the computation.
The speed of convergence of the series is quite rapid, requir-
ing only 4-14 terms(depending upon the value @) to
achieve necessarily good accuracy. Therefore, this paper ac-
tually developed an efficient algorithm based on these series
expressions.

The angular spheroidal function of the second kind given
above also serves as a special function in mathematical phys-
ics, but it has not found many applications in physics and
electromagnetic wave theory. However, the angular spheroi-
dal function of the first kind is an important special function
which is commonly employed in physics and in the full-
wave analysis of practical electromagnetic problems. Hence
the angular function of the second kind will not be dealt with
in great detail later in this paper.

whereP]'(x) is the associate Legendre function; herein and

in the sequel, the prime over the summation sign indicates

that the summation is over only even values/0fwhenn

—m is even, and over only odd values sfwhenn—m is

B. Power series representation

Expanding the associated Legendre functions as a power

odd; and series of 7%, we have the following expressions of the
m‘D(C): lim d™, /p (18) angular spheroidal harmonics for even and odé (n):
P —/+p
p—0
(1=7)™ 2 c(e) (1=, (n—m) even,
Smn(C,7) = w (193
n(l—nz)m’zgo ch(c)(1—- 5%, (n—m) odd,
and
(1- 772)m/2k§=:0 c(—ic)(1—7?)%, (n—m) even,
7(1= 2™, cB(~ic)(1-»?)% (n—m) odd,
k=0
where the coefficients)," are related tal"" by
i (2m+20)! T(k—r) T (k+m+r+3) o () even
1 =k (2r)! I(=r) F(m—l—r—l— %) are ,
Co =1 (20)
2™k (m+K)! 3 (M2l k) r(ktmr+3)

iq, (n—m) odd.

 (2r+1)!

r

F=n r(m+r+3)

Inside Eq.(20), argument(c) is not specified. For both pro- representation of the angular spheroidal harmonics in terms
late (c) and oblate {-ic) cases, Eq(20) is always valid. of the following simple ascending power seriesypfs given
Besides the above power series of 3°, an alternative by
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o Y _ pria(c) _ BP(—ic)
Sm(Cm)=(1-7)™ X" pMo)n’, (213 m——"——=0, and m—————=0. (23
/=01 /e PPT(C) /—» BP(—ic)
* These series forms in Eq&l9a and (19b) serve as alterna-
Smn(—ic,7)=(—1)""™(1— p?)™%e 7> BI(—ic) tive exact representations of the angular spheroidal harmon-
/=0 ics where the associated Legendre functions are not readily
X (1+ )" available. The computational and convergence speeds for the

evaluations of Eqs(199 and (19b) are almost the same as
” ) those of Eqs(16a and(16h). Equationg21a and(21b) also
=(1- Wz)m/zem;o BI(—ic)(1-n), give good results of the angular spheroidal functions, but the
o convergence of the series is not as rapid as that of the series
(21b  of Egs.(19a and(19b) or (16a and (16b).

wherep?'"(c) andB)'"(—ic) satisfy respectively the recur-

rence relations as follows: C. Solution of auxiliary second-order differential equation
, - , As was known previously, the prolate and oblate angular
(/+D)(7/+2)pyi(0)—[/(/+2m+ 1)+ m(m+1) spheroidal harmonics satisfy the differential equation
~Amn(©)1P27(€) — c%p"5(c) =0, (229 q q 2
) ) mn ) a7 (1- ﬂz)d_srnn(cvﬂ) + )\mn_czﬂz_ 2
2(/+1)(/+m+1)B7] (c)—[/(/+2m+1+4c) U 7 1=7
+(mM+1)(M+2¢) =N pn(—ic)—cZ]BM(—ic) X Smn(€,7)=0. (24)
+2(/+m)cB)",(—ic)=0, (22)  To determine the solution of the spheroidal function
’ uniquely, the boundary conditions given as follows may be

and used:

(=1 ™2(n+m)!

(n=m\ [n+m| * (n—m) even
Snl(C.0)= 2( 2 )! 2 ) (253
0, (n—m) odd;
0, (n—m) even,
, (=)™ Y2(nm+1)!
Smn(C,o)_ (n_m_l n+m+1 ! (n—m) odd. (25b)
2n 5 | 2 !

The prolate angular spheroidal harmonics can also be olbr
tained from the solution of the auxiliary differential equation
and its boundary conditions in different forms, as stated in S'(¢,0=0,
Refs.[9,10. The only difference between this method and

the method given by Abramov and co-workers is the boundwhereS(c,1) is bounded and finite, and
ary conditions utilized. Abramov and co-workd®10] ap-

plied the boundary and normalized conditions fl

-1

S2(c,m)=1,

S(c,0=0,
to solve numerically for the solution of the differential equa-
: - tions.
whereS(c,1) is bounded and finite, and However, the boundary conditions given here are more
L numerically straightforward and efficient. Whatever the
J' 2 (c,p)=1, boundary conditions are, the solution of the differential equa-
mn tion is very computationally costful as compared with the
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TABLE lll. Comparison of calculated values of angular func- The intermediates,, 8,, andy, used above are given by
tions Syy(3,c0s6), with corresponding values tabulated by Flammer

(1957.
0 Sox(3.0,086) (2m+/+2)2m+/+1)
Y= omra/+3emiz/—nC @7
(in degreep Computed Flamme{1957) (2m+2/ )(2m+2/ )
0 +1.040 93 +1.041
10 +1.02306 +1.023
20 +0.963 95 +0.964 B,=(Mm+ /) (M+/+1) = Amn(C)
30 +0.849 71 +0.8497 N
50 +0.410 411 +0.4104 2(mt A(m+/+1)—2m e om
80 —0.417 055 —0.4171 (2m+2/-1)(2m+2/+3)

methods mentioned above. So far, this method has been ap-

plied to the prolate spheroidal coordinates only. Further ex- _ /(/=1) 2 27
tension to the oblate spheroidal coordinates can be made as YT 2mr2/-3)(2m+2/-1) < 79
well.

where A ,(C)’s denote the eigenvalues for a givenand
assumed values andn.
In order to determine the unique solutions of tE"s,

To show the accuracy of this program, we have calculateg, following two equations are also used: For evenm
Snn(c) and obtained a great deal of data. In Table Ill, the ’

currently calculated results 0%y,(3,cosd) are compared
with those tabulated by Flammég]. It is clear that very
good agreement between the two sets of results are demon- *
strated, but the current results are of better accuracy to any 2

D. Comparison of calculated results and Flammer's data

(=127 +2m)!

, A\ |N7+2 d7ice)
degree of precision. /=0 S L)y Em,
2 5! !
_1\y(n—m)/2
V. INTERMEDIATE COEFFICIENTS  d7" AND d7}" ) (n+m)! (283
’ fem[ M| [n+m)
The coefficientsd”" used in many places for positive 2 5 !

index /=0 varying from 0(or 1) to« for even(or odd

n—m, andd™}(c) with negative index-k<0 varying from

—2m (or —2m+1) to —2 (or —1) for even(or odd and for oddn—m,
n—m, are determinef] from the continued fraction formu-

las
o, (DY /4 2m 1)1 4
. o (/1) [/ +2m+ 1) 7(©)
Ft2_ a/+2 /=1, (268 2 2 |’ 2 :
mn ) o= 4y
o P/+2— A (—1)"M=D2(n+m+1)!
p/+4—ﬂ N n—-m-1) (n+m+1} ° (280
’ Pr+e— " zn—m( 5 [ > [
mn
d=k —_ Xk (26h) With the above equations, we can determine the coefficients
M2 _ Yk@k-2 d""(c), where, most importantlyg can be a complex num-
B« By_p— - ber andr=-2m,...,—2,0,2,... for evenn—m, or —2m

+1,...,—1,1,3,... forevem—m.
It is found from the definition that

VI. CALCULATION OF RADIAL

gmn gmn SPHEROIDAL HARMONICS
2 3

dOmn: ~Po. amn =Py A. Series representation in terms of spherical Bessel functions

The radial spheroidal functions of the first to the fourth
p,=B/a,q,=v, 1a,. kinds can be expressed by
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1 g2-1\" 2 (2m+ /)
R (c,&)=— AR C) ———— 2z (C 29
n(C.6) = s (2m+/), = BN Pi(e) — 2k (c8), (299
RON(—ic,ig) - £41)™ E g —io) ETE 0 e, (am
—IC,1§)= ——% i’ —ic)———
mn d (2m+/)| §2 Por ) /7 /) m+/
5 oS
|
where z)(x) is theith kind of spherical Bessel functions (2m+3)(n+m+1)! 1
of order n, ie. 2(x)=j,(0), ZP(0=n(0, 20(x)  Km(C)= n—m—1| (n+m+1
=hM(x), andz{Y(x)=h{®(x), respectively. Sincé{Y(x) 2“+mdrl“”(c)cm+1m!( 5 )! 5 !
=jn(x)+iny(x) andh{®(x)=j,(x)—in,(x), thus
. m+r)!
R&(c.H=RY(C.H+IRZ(CH, (308 xz aie) X (nem) odd
Rim(€, &) =R(c,&) —iRM(c,é) (30b) (330
for the prolate functions, and
and
R (—ic,i&)=R(—ic,i&) +iRPZ(—ic,if), (31
n—m\ (n+m
- - . . n—m H—11 1dmn
R (—ic,ie)=RE(—ic,i&)—iRZ)(—ic,i&) (31b 200 2 (Zm)-( 5 ) 5 )-d_Zm(C)
C =
for the oblate functions. " (2m—1)m!(n+m)lc™t
It is checked numerically that although the summation of |
Eqg. (309 is rapidly convergent, Eq30b) converges very Xz dm™(c )( +r) (h—m) even
slowly and similarly for Eqs(313@ and(31b). It is observed ' '
from numerical evaluation that the spherical Bessel function 34
of the second kindwﬁ,?w(cg) becomes larger and larger (349
when its coefficient becomes smaller and smaller. However,
their product varies quite slowly and remains almost constant 20 2m)1 ( n—m— 1) ( n+m+1 |
when 7 is large. Therefore, this set of equatiof@h) and 2 ' 2 2 '
(31D fails in convergence and is not recommended. Kmn(C) =~ (2m—3)(2m—1)m! (n+m+1)!
B. Proportional relations of angular and radial functions y mgmH(C)E,H (e (2m+ r)!
Numerically, the radial functions R{})(c,&) and cm2 rt
R)(c,£) can be computed using the equati¢gs
(n—m) odd. (34b)
Rian(€.€)=Smi(C, )/ k() (329
_ _ a,_; It is found numerically that Eq$32a and(32b) are eas-
Rina( ~1€,1£)=Suo( —i¢.i §)/ g —iC), (320 ily computed if the prolate and oblate angular functions are
(2) _ (2) obtained. Therefore, they are highly recommended. Also it is
Rinn( C+£) = Smn(C. )/ kin(C), (329 seen that in the computations, only the intermediate param-
_ @, _ > etersd""(c) andd""(—ic) (wherer starts from—2m for
TIC 8 =Smol ~iC,18) kel —iC) (329 evenn—m and from—2m+ 1 for oddn—m) are needed.
together with the coefficients(l) and «Z) given by
C. Power and Legendre functional series representations
1 (2m+1)(n+m)! _ . i i
k()= 1. Legendre functional series of radial functions
mn n—m) [n+m -
2n+md(r)nn(c)cmm!( 5 ),( 5 )! of the second kind
Since R()(c,¢) and R{)(—ic,i¢) can be obtained di-
., oo (2mEr)! rectly from the spherical Bessel functiong(¢), we will
x> dr(c r—l’(n_m) even, concentrate on the spheroidal harmonics of the second kind
r=0 ' R (c,&) and R¥)(—ic,i&) only. The following relations
(338  were derived by Flammer in 19572]:
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Rued)= ot 2 dO0RL (Ot 2 m:‘(c)PPml(s)l, (353
and likewise
1 - ! - ’ . .
R&?&(—ic,ia:(z)—.{ dM(—ic)Qm, i+ X ;”|P<—uc>PF”_m_1<|§>}. (35b)
Kmn(—1C)| r=—-2m,—2m+1 r=2m+2,2m+1

In the above expressions, the defaulted setting of the Leg- im(g24+1)m2”
endre type in numerical computations @§'(£) andQ™(&) RY(—ic,ié)= TE co(—ic)(£2+ 1)K
should be changed from the real tyehere there are branch Kmn(—1€) k=0
cuts from—o to —1 and+1 to +=) to the complex type 1, (n—m)even
(where there is a branch cut frome to +1). Otherwise, w! . (36b)
complex values of the associated Legendre functi®fi&f) i¢§, (n—m)odd,

and Q['(£) (¢=1) will be obtained, which is shown to be

untrue. In versions 3.0 or 3.01 ofATHEMATICA, the de- Wherecy with real and imaginary argumentsand —ic is,

faulted definition of the associated Legendre function hagiven, respectively, by Eq20) in terms of the coefficients

been changed as compared with that in the previous versiolf""(c) and d"(—ic), while «{i}(c) and «{i}(—ic) are

from 2.0 to 2.2.3. Corresponding changes should be made i@iven, respectively, by Eq$33a and (33b).

accordance with the definitions by Flammer. ~ As compared with Eq$293 and(29b), the above expres-
This method for computing the prolate and oblate radiasions in Eqs(36a and(36b) are not so straightforward and

spheroidal harmonics of the second kind is also a very goof€duire longer computation time. Therefore, they are not

choice, since it provides an independent evaluation wherBighly recommended in the numerical implementation.

only di"" and the associated Legendre functi¢tjsand Q' 3. Power series of radial functions of the second kind

are needed. The radial spheroidal harmonics of the second kind can

2. Power series of radial functions of the first kind also be expressed as follows:

Besides the above expression, another representation of _ ) 1 (1) +
the radial spheroidal functions is the series expression in mn( C:6)= 2an(C)Rmn(C'§)|09 -1 +9mn(C.§),

terms of its powers of?—1 for prolate coordinates and of (373
£2+1 for oblate coordinates, given, respectively, by
a
(2-1)mR R(rﬁ%(—ic,iff)=Qﬁm(—iC)R%%(—ic,if)(|Og§— 5)
RANC,&) =~ ——2 (—1)*cHlc) (&~ 1) o
Kmp(C) k=0 +gmn(—icC,i&). (37b
1, (n—m)even The intermediate function®,,(c) and Q},(—ic) are de-
X{ & (n—m)odd, (369 fined by
|
[k((c)]? (—1)m-r+l (2m—2r)! (n—m) even
Qur(€) = —"——2, a"(c) ——— _ _ (383
c r=0 ri2™"(m-r)1? ((2m=2r+1)!' (n—m) odd,
_ [kD(—ic)]2 a™(—ic) (2m—2r)! (n—m) even
Qhr(—ic)=(~1)"—" — _ - . (38b)
=0 r1[2™"(m—r)1]? [(2m=2r+1)! (n—m) odd,
where
d’ 1
a"(@)=| — 2 . (39

x| <
[kzo Crznkn(.)xk

The other intermediate functiong,(¢) andg,(—ic) are defined by
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&, (n—m)even

2 aN—m/2 mn 2__qyrl 2’
Omn(C, ) =(£2-1)"™2 3 bI(0) (¢ 1)[1' (—m) odd, (409

i&, (n—m)even

P — (&2 —m/2 _ r—m/2,|ymng _ 2 r
Omn( —1C,16)=(£2+1)7M2 3, (—1)" "M |c><§+1>f1, (n—m) odd, (40b)
with
- r(r+m+1/2)(2m+2r —1)!
b"M(@)=———- > die®
(@) «2(@) Z‘o 2r (@) 2™ Y(m—1)!(2r+1)!
r(r+1)(r+m=1/2)(r +m+1/2)(2m+2r - 2)! +“m+2f‘1)’2] (2m-+4r — 4k—1)(2m+ 2r — 2k—1)!
B 2™ Y m—1)!(2r+1)! k=0 2™m!(2k+1)(m+2r—k)(2r — 2k—1)!
S (2r—1)! -
k§+1pplzr(.)me!(Zr—Zm—l)!]’ (n—m) even, (413
. - mn (r+l)(r+m+1/2)(2m+2r)!_(r+l)(r+m+1/2)[2m+r(r+m+3/2)]
br(®)= K2(®) 2, 4@ 21 (m—1)1(2r +2)! 2" (m—1)!
(2m+2r—1)!+“m+2”’2] (2m+4r — 4k+1)(2m+ 2r — 2k)!
(2r+1)! k=0 2™m!(2k+1)(m+2r —k+1)(2r —2k)!
S (2r—2)! -
_k%1p"z"l(.)zmm!(zr—zm—z)!]' (n=m) ade, (418

where the symbo® stands for eithec or —ic.
+0(£7%), &—ow

R (e 1) = 1 n+1
mn(C, )—Cgco cé 5T
D. Representation using its differential equation (433
In a similar fashion to the angular spheroidal harmonics (1) .
the radial spheroidal functions of various kinds can also be\/vere suggested to determifi(c,£) uniquely and
obtained from the solution of the following differential equa-

tion: +0(£79), E-ow

(43b

q 4 mm= cé 2
— 1) —RWM

to determine R()(c,£) uniquely. The rest functions
RO(c,e)=0. (42 REXc.&) andR{)(c,£) can be obtained from Eq30a and

(31b) or by using the forms of t€ sin(cé—[(n+1)/2]7)

and 1€£¢ exdi(cé—[(n+1)/2]w)] similar to the boundary

To uniquely determine this, the boundary conditions must bé:ondltlons of Eqs(333 and (33b).

utilized. Although some boundary conditions such as those . .
n his equaions(4.16.13-4.16.160 were provded by TAPLE. Conparion of cacuted vaues o e o e
Flammer[2], they are not recommended for use here sinc% 02357 P 9

each of them consists of the parametetS"(c) and y Flammer(1957).

m2
_p2¢2
A= €6

d""(—ic). If these parameters have been obtained, it is un- ¢ RY(3.6)
necessary to solve the equation numerically.
In Ref.[10] the conditions Computed Flamme{1957)
1.005 0.329 514 0.3295
|R§n12,(0,1)|<°° 1.020 0.334 628 0.3346
1.044 0.342 106 0.3421
1.077 0.350 931 0.3509

and
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TABLE V. Comparison of selected values Eh(nf%(c,g) computed by Flamme(1957, MacPhie and
Do-Nhat, and the present authors.

c (m,n) ¢ RIN(C.&)
Flammer MacPhie and Do-Nhat This paper
1.0 2,2 1.005 —375.0 —374.977 23 —374.977 22
2.0 2,2 1.005 —48.52 —48.522 271 —48.522 268
3.0 2,3 1.005 —37.45 —37.413 938 —37.428 719
4.0 2,3 1.005 —13.34 —13.331 298 —13.339 979
E. Numerical computation and comparison and
with Flammer’s data
- : d
To show the efﬁqency 81; this program, we have calcu- anl) —ic,in)— . Rﬁﬁﬁ, —ic,i ﬂ)—R(nﬂ —ic,iz)
lated many data points d®;,/(c,&) by using Eq.(293. In &
Table IV, as an example, the calculated resultRgf( 3,£) d 1
are compared with those tabulated by Flamfrigr A very x —RWD(—jcin)= ——:. (44b)
good agreement between the two sets of results has been dg ™" c(&%+1)

obtained. In a similar fashion, the current results have a bet-

ter accuracy and higher precision. VIIl. NUMERICAL COMPUTATION AND COMPARISON

OF RP(C,&) CALCULATED WITH MORE
VIl. DERIVATIVES OF ANGULAR AND RADIAL RECENT DATA

SPHEROIDAL HARMONICS
In a recent paper, the accuracy of the values of

It has been concluded that E¢$6a, (16b), (179, (17D), R2)(c, &) provided by Flammef2], and again reproduced in
(299, (29b), (329, and(329) are Qeg,lrable e(cgjatmns 10 COM- /\hramowitz's handbook22], was argued by MacPhie and
ptjzt)e Smn(C, 77)(1) and Sm"(?l')c" ?7)’_ Smﬂ(c'77()2) and Do-Nhat[25]. It was claimed that the values given by Flam-
San(—ic,in), Run(c,n) andRyi(—ic,in), andRyA(C,7)  mer were inaccurate.
and R2)(—ic, |77) Therefore, their first-order derivatives  p\acPhie and Do-Nhaf25] then recalculatec®V)(c, &)
can be obtamed directly by taking the first-order derivatives,,qr (2)(C ¢) using double precision, and a slightly different
of the associated Legendre functions and the spherical Bess gxpansmn series in which the functior®™ (¢) and

r+m

functions, respectively. P, in Eg. (359 are expanded around=1. Readers

Although Eqs.(389 and(38b) serve as the most straight-
forward formulas to compute prolate and oblate radial spheWho are interested in this topic can refer to Rek] or [26]

roidal functions of the second kir@s can be seen from the for more details about the alternate expression. In view of

listed references prolate and oblate radial spheroidal har- this clarification, the set of values printed in REZ5] was
monics of the second kind can also be obtained from Eqsrecomputed with this program for verification purposes. An

eéxample table that compared the results from Flammer, Mac-
(320 and (32d). Also the following functional forms of the
Wronskian test values of the radial functions of the first anaPhle and Do-Nhat, and the authors are tabulated in Tables V

. nd VI.

S?f)‘zgdn)kg‘:jRéﬂe_?f‘i’n;r_eq“e”t'y employed to comput@ A comparison shows that for certain setswh, ¢, andé,
v all the three sources produced different numerical solutions.
d d This discrepancy prompted us to make a comparison of the
ﬁnl%(C,??)—Rﬁnzg(C ﬂ)—R(rf%(C,ﬂ)—Rﬁ%(C,n) computational accuracy for the three sets of solutions by
d¢ dé computing the respective Wronskian values and comparing

1 them against the theoretical Wronskian values.

= (449 It is observed that the computed Wronskian values using
c(£2-1) Flammer's result, in general, are lower in accuracy when

TABLE VI. Comparison of selected values 82 (c,£) computed by Flammef1957, MacPhie and
Do-Nhat, and the present authors.

c (m,n) ¢ RE(c,&)

Flammer MacPhie and Do-Nhat This paper
1.0 (2,2 1.005 75740 75 736.490 75 736.490
2.0 2,2 1.005 9738.0 9736.9853 9736.9859
3.0 2,3 1.005 7556.0 7569.0142 7566.0512

4.0 2,3 1.005 2662.0 1232.5894 2662.5329
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TABLE VII. Computed Wronskian values: Comparison of results by Flam®€67, MacPhie and
Do-Nhat, and the present authors.

c (m,n) 3 Wronskian values

Flammer MacPhie and Do-Nhat This paper Theoretical
1.0 2,2 1.005 99.7560 99.7506 99.7506 99.7506
2.0 2,2 1.005 49.8768 49.8753 49.8753 49.8753
3.0 2,3 1.005 33.2374 33.2502 33.2502 33.2502
4.0 2,3 1.005 24.9352 18.2335 24.9377 24.9377

compared with the other two. The difference from the theo-=3,4, and 5 are found to be rather inaccurate. This conclu-
retical Wronskian value increases when the value @fi-  sion was arrived at after the Wronskian values computed
creases. Thus MacPhie and Do-Nhat's claim was verifiedusing MacPhie and Do-Nhat's values (5{55%(0,5) and
Their values achieve a double precision accuracy for smala)’ . v were found to differ from the theoretical Wronsk-
value ofc. However, their value decreases in accuracy as the ™"

value ofc becames larger. One example is shown in Tables an value by quite a large margin.

VI and VII wheren=3, m=2, £=1.005, andc=4.0. The

Wronskian value computed from the authors’ values of

R®)(c,&) and R?) (c,£) is generally more accurate than
MacPhie and Do-Nhat's computation and, to date, this is the

IX. ACCURATE VALUES OF OBLATE SPHEROIDAL
RADIAL FUNCTIONS OF THE SECOND KIND

most accurate computation B2)(c,£) for arbitrary values The claim by MacPhie and Do-Nh§25] about the inac-
of ¢c known in the literature. No decrease in accuracy is ob-curacy of Flammer’s tabulated valuesl@ﬁf (c,&) prompted
served when the value afincreases. the present authors to recalculate the oblate radial function of

It should be noted that for more accurate values ofthe second kind, i.e.R\?)(—ic,i¢). A detailed study of
Rfﬁ%(c,g) (especially for the ranges=1,2,3, and 4m=<2, Flammer's work led us to discover some errors in the
andn=2), one should refer to the printed tables publishedformer’s expression of the special valuesRif)(—ic,i0).
by MacPhie and Do-Nhd®5], instead of the tables given by Numerical solutions show that his equatio6.149 and
Flammer[2]. However, the values d?R(z)(c &) tabulated by  (4.6.15b are incorrect. So we examined the equation theo-
MacPhie and Do-Nhat in the ranges=2, n=3, andc retically. Using Eq.(32b), for odd (h—m) we can express

Rgg;’(—ic,iO):W

1

a (2m-+r)!

(2m+3)(n+m+1)'2 d"(—ic) o

n+m+1
2

n—-m—1
2

(49

X 2“+de"(—ic)(—ic)m+lm!< I1Shn(—ic,0)|.

Then by using Eq(45) and the special values in ER5b), we can, in a straightforward manner, simpIRﬁ,{(—ic,O) to
, infmflzmm]Cerldmn(_ic)
R (—ic,i0)= (46)

(2m+3)2 dmn(— )w

Equation(46) should be used instead of the wrong expression given by Flarfimeequation(4.6.14]. This error in the

expression ORET},)]'(—ic,O) further resulted in an uncorrected expressioR@(—ic,0) [see Eq.(4.6.15hof Ref.[2]]. The
correct expression should then be

L in m+1(2m+3)2 dmy( —|c)—( sk

R (—ic,i0)=— , . 4
mn : cRY'(Zic,io) 2™mic™ 24T (—ic) @7
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This can also be proved using the direct reduction. Obvithe first and second kinds and prol&be oblate radial sphe-

ously, we have the following relations:

(Do 2"l z" djn(2)| _2™inz"t
In@l—0=Zrrmr "oz |, (@Dl
(48)
Since
d 52—1 m/2
I(c,§)=d—§( 7 ) Jmir(c€)
(52_1)m/271_ (52_1)m/2 -
=M— m-+r c )+—C rfn+r c )l
et jm+r(CE e Jm+r(CE
(49
thus we have
o 2™ (m+1)
|(—IC,I§)|§HO=Imw(IC)m+15r1
2™ (m+1)! o
+c(2m—+3)!(m+1)(|c) o1
. 2m+1cm+1(m+ l)'
T T amrer o (50

where §;; (=1 for r=1 and 0 otherwisgedenotes the Kro-

roidal harmonics of the first to the fourth kinds, as well as

their first-order derivatives and their eigenvalues. Based on
this comparative study of the various methodologies, an ef-
ficient algorithm for numerically computing these functions

and eigenvalues is developed with the widely accepted
MATHEMATICA package.

First, an exact method, solving the continued fraction
equations, is adopted in the numerical implementation; the
algorithm developed is therefore very accurate, quite fast,
and very efficient for computing eigenvaluas,, of these
spheroidal functions with the complex argumentwhere
actually the dielectric medium is assumed to be lossy mate-
rial). With existing computer facilities, it is found that the
current algorithm employing the fractional function is more
efficient and accurate, as compared with others available. As
the argument becomes very largésay 1000+i500), quite
a high oscillation is observed from the functional plot of the
equation. Therefore, the technique for solving the continued
fraction equations actually fails. To overcome this problem,
the second algorithm was developed subsequently.

Second, the intermediate parametef¥' (wherer varies
with a step size 2 from-2m+/ to «© and /=0 for even
n—m and 1 for oddn—m) and dz]{‘ (wherer varies with a
step size 2 from Bh+2—/ to ») are computed with great
care after an estimation of the eigenvalugg,. The evalu-
ated data published by Flammer in his append[@save
been considered as referenced results for comparison; those

necker delta. Taking the derivative of the radial spheroidafata have also been reproduced in a very popular and widely

function of the first kind and assumirig=0, we have

R\Y (—ic,i0)
* 2m-+r)!
E in—m—ld:nﬂ(_ic)¥i|(—iC,iO)
r=1 i

- 2 !
E dfrﬂn(_ic)m
r=1 r

(51)

Substitutingl (—ic,i0) in Eqg. (50) into Eqg. (51), we can
obtain the same form as E{6).

used handbook of mathematical functions by Abramowitz
and Steguri22], with permission from Flammer. Therefore,
Flammer's booK 2] has been regarded as a classic text for
the spheroidal functions. It is found, however, that the com-
puted results of coefficiend]', and therefore some of the
radial spheroidal harmonics of the second kaﬁ,)](O) and
their derivativesR(2)' (O) [where (©)=(c,£) for prolate
spheroidal functions, and—(ic,i£) for oblate spheroidal

functiond are quite inaccurate, e.q?{2(5,1.077) has a rela-
tive error of 9.79% while its derivativag%)'(5,1.077) has a
relative error of 37.57%.

Third, it is found that the existing personal computing
facilities are capable of evaluating the angular and radial

_ In adopting MacPhie and Do-Nhat's approach to estabgpheroidal harmonics of the first kind,(c,7) [or
lishing the accuracy, the oblate Wronskian test valuh) Sun(—ic,7)] and RE(c,&) [or RE(—ic,i&)] in terms of

is computed using the same parameters provided b?ﬁe series of the associated Legendre functiBfj¢7) and

Flammer, i.e., m=0,1, and 2,n=0,1,2, and 3, and . L
c=0.2,0.5.0.8.1.0.1.5.2.0. and 2.5. The Wronskian test valug'c, SPherical Bessel functiong(z). However, for angular
nd radial spheroidal harmonics of the second kig,

shows that a comparatively much higher accuracy has beefl .

achieved by us \t)vith oun\)/fATHEMAﬂ?:A package.y Good X(¢,m) for Sﬁfr)](—.|c,.77)] and R{)(c,£) or R

agreement between the theoretical Wronskian values and ofir 1€:16)], %omputatlon in terms of the associated rl;egendre

computed Wronskian values are found to full precision acfunctions Pii(z) and the intermediate parametefs" and

curacy. In addition, it also shows the inaccuracy in Flam-dp| is highly recommended.

mer’s values, which was already pointed out by MacPhie and Finally, the values of the oblate spheroidal wave functions

Do-Nhat for the prolate case. of the second kind provided by Flammig] were found to

be inaccurate. In view of this inaccuracy, the authors of this

paper recalculated oblate radial functions of the second kind

and their derivatives using the same parameters. The values
In this paper, we reviewed various methods employed t@btained were then verified by using Wronskian test values.

evaluate prolat¢or oblatg angular spheroidal harmonics of Also, various values provided by the programs attached in

X. CONCLUDING REMARKS
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Refs.[20] and [8] were also verified. It is found that the [(n—m)/2]! in Eq. (4.2.23 of Ref.[2] should be read as
existing programs are quite useful to a certain extent in meef(n+m)/2]! (i) The denominatok®(—ic) in Eq. (4.2.9
ing the requirement of accuracy, but a few discrepancies argf Ref. [2] should be read ax?)(—ic). (iv) The term
still found, for example, the values produced in Ref5]. co (+(i) co

Using Wronskian test values, it is shown that the aIgoritth‘”SCOSm+1)¢ of M§m+1’n¢ should beg(m-+1)¢. (v) The
developed in work with th&lATHEMATICA package achieves correct form of the radial functioRg%)’ in Table 103 of Ref.

the best accuracy to a full precision. While the other pro{2] should beR{?. (vi) Equations(4.6.14 and (4.6.15b of

grams cannot be used to compute the spheroidal harmoniggef. [2] should be corrected to our equatio@$) and (47).
in lossy media, this algorithm can be utilized instead. Also,

the algorithm works very well for both small and very large
C’'s.

Some typographical errors in Reff2] should also be
pointed out. The following list indicates the corrections to  This work was supported in part by the NUS/Telecoms
those errors to our awareness: There is a missing minus Joint R&D Project No. 018, and a grant from MINDEF-
sign in Eqg. (3.1.7 of Ref. [2]. (i) The second factorial NUS/12&13/96.
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